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Sharpee TO, Nagel KI, Doupe AJ. Two-dimensional adaptation
in the auditory forebrain. J Neurophysiol 106: 1841–1861, 2011. First
published July 13, 2011; doi:10.1152/jn.00905.2010.—Sensory neu-
rons exhibit two universal properties: sensitivity to multiple stimulus
dimensions, and adaptation to stimulus statistics. How adaptation
affects encoding along primary dimensions is well characterized for
most sensory pathways, but if and how it affects secondary dimen-
sions is less clear. We studied these effects for neurons in the avian
equivalent of primary auditory cortex, responding to temporally mod-
ulated sounds. We showed that the firing rate of single neurons in field
L was affected by at least two components of the time-varying sound
log-amplitude. When overall sound amplitude was low, neural re-
sponses were based on nonlinear combinations of the mean log-
amplitude and its rate of change (first time differential). At high mean
sound amplitude, the two relevant stimulus features became the first
and second time derivatives of the sound log-amplitude. Thus a
strikingly systematic relationship between dimensions was conserved
across changes in stimulus intensity, whereby one of the relevant
dimensions approximated the time differential of the other dimension.
In contrast to stimulus mean, increases in stimulus variance did not
change relevant dimensions, but selectively increased the contribution
of the second dimension to neural firing, illustrating a new adaptive
behavior enabled by multidimensional encoding. Finally, we demon-
strated theoretically that inclusion of time differentials as additional
stimulus features, as seen so prominently in the single-neuron re-
sponses studied here, is a useful strategy for encoding naturalis-
tic stimuli, because it can lower the necessary sampling rate while
maintaining the robustness of stimulus reconstruction to correlated
noise.

neural coding; information theory; receptive field; spike-triggered
average; spike-triggered covariance

TO ACCURATELY AND EFFICIENTLY represent events in the sur-
rounding world, the nervous system has to take advantage of
the statistical regularities present in input stimuli. These sta-
tistics, however, are not constant and routinely change over a
wide range. For example, the auditory system has to tackle
changes over nine orders of magnitude in sound pressure
levels, from 30 dB, representing a whisper in a quiet library,
through 60–70 dB, characteristic of normal conversation, to
80–90 dB of noise in city traffic. To cope with such large
changes in the stimulus statistics, auditory neurons have been
shown to adaptively change both how they filter incoming
stimuli (Bandyopadhyay et al. 2007; Frisina et al. 1990;
Krishna and Semple 2000; Kvale and Schreiner 2004; Lesica
and Grothe 2008a; Lesica and Grothe 2008b; Nagel and Doupe
2006; Reiss et al. 2007; Theunissen et al. 2001; Theunissen et
al. 2000; Woolley et al. 2006), and how they map the filtered

stimuli onto the available range of neural firing rates (Dean et
al. 2005; Nagel and Doupe 2006). With increasing sound
volume, auditory neurons change their receptive fields (filters)
by becoming less sensitive to the mean stimulus value, and
more sensitive to deviations from the mean, either in time
(Frisina et al. 1990; Krishna and Semple 2000; Lesica and
Grothe 2008b; Nagel and Doupe 2006), in frequency (Bandyo-
padhyay et al. 2007; Lesica and Grothe 2008a; Nelken et al.
1997), or both (Lesica and Grothe 2008a; Nagel and Doupe
2008). Studies of sound onset detection by auditory neurons
are also consistent with temporal summation at low sound
pressure levels (Heil and Irvine 1997; 1996; Heil and Neubauer
2001), and in central auditory areas, with a shift to a derivative
operation at very high sound levels (Galazyuk and Feng 2001;
Heil and Irvine 1998; Phillips et al. 1984; Sullivan 1982).
Finally, it should be noted that such transformations in how
sounds are filtered in the auditory system offer many parallels
to the adaptive filtering observed in the visual system (Barlow
et al. 1957; Chander and Chichilnisky 2001; Shapley and
Enroth-Cugell 1984) and are consistent with the “redundancy
reduction” hypothesis (Barlow 1961).

Recent studies, however, demonstrate that neural responses
in many sensory systems, including visual, auditory, and so-
matosensory, are affected by more than one stimulus compo-
nent (Atencio et al. 2008; Chen et al. 2007; Fairhall et al. 2006;
Maravall et al. 2007; Rust et al. 2005; Touryan et al. 2005;
Touryan et al. 2002). The relevance of multiple stimulus
dimensions to neural spiking opens up the possibility of qual-
itatively novel adaptive phenomena that cannot be observed in
the one-dimensional (1D) model of feature selectivity. Even an
unchanging multidimensional model can lead to diverse be-
haviors when sampled in different regimes (Hong et al. 2008),
and a number of additional scenarios become possible in a truly
adapting system. First, adaptation could lead to changes in the
secondary dimensions that may differ from those observed in
the primary dimension. Second, adaptation could also change
the dependence of the firing rate on relevant stimulus compo-
nents (the gain function). For instance, the gain function could
rescale similarly for all relevant components, as has been
recently observed in the barrel cortex (Maravall et al. 2007).
Alternatively, the dependence of firing rate on stimulus could
change differently for different stimulus components. This, in
turn, will alter the relative contributions of each of the stimulus
dimensions to neural spiking, even if the adaptation does not
affect the stimulus dimensions themselves. We set out to
explore these possibilities for adaptive phenomena by using the
method of maximally informative dimensions (MID; Sharpee
et al. 2004) to analyze multidimensional stimulus representa-
tions of neurons in the zebra finch auditory forebrain region
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known as field L, an analog of the primary auditory cortex in
mammals (Fortune and Margoliash 1992; 1995; Wild et al.
1993).

MATERIALS AND METHODS

Physiology and spike sorting. Experiments were conducted in five
adult zebra finches using procedures approved by the University of
California, San Francisco Institutional Animal Care and Use Com-
mittee, and in accordance with National Institutes of Health guide-
lines. Recordings were made using chronically implanted micro-
drives, as described previously (Nagel and Doupe 2006), and were all
collected as part of that study, but extensively further analyzed here.
Briefly, during recording, the bird was placed inside a small cage
within a sound-attenuating chamber. Birds generally sat in one corner
of the cage for the duration of the experiment, although their move-
ment within the cage was not restricted. Two to three tungsten
electrodes were used simultaneously. Putative single units were iden-
tified on the oscilloscope by their stable spike waveform and clear
refractory period. All spikes were resorted offline based on the
similarity of overlaid spike waveforms and on clustering of waveform
projections in a two-dimensional (2D) principal component space.
Neural recordings were considered single units if the number of
violations within a 1-ms refractory period was �0.1% of the overall
number of spikes. After the final recording, histological sections were
examined to confirm that electrode tracks, and in some cases marker
lesions, were located in field L.

Auditory stimuli. Neurons were probed with amplitude-modulated
sounds whose temporal correlations approximated those characteristic
of natural sounds. Each of the neurons was exposed to such sounds at
low and high mean sound amplitude, as well as to low-intensity
sounds scaled to have a larger variance. The stimuli were constructed
from a slowly varying envelope with fixed statistical properties, as
described below, and a rapidly varying carrier that could be adjusted
for the frequency preference of each cell. The slowly varying enve-
lope was generated from a log-normal distribution, such that the
logarithm of the envelope was Gaussian noise with an exponential
power spectrum P(f) � exp(�f/50 Hz). The Gaussian log-envelope
n(t) was scaled to have mean � and variance �. When multiplied by
a noise carrier with unit standard deviation, this yielded sounds whose
overall root-mean-square (RMS) amplitude (in dB) was given by
RMS � � � log(10) �2/20. A sample trace of log-amplitude wave-
form and its associated neural responses are shown in Fig. 1. We
analyzed stimuli in three different distributions: 1) “low mean/low
variance” with � � 30 dB and � � 6 dB, corresponding to RMS �
34 dB; 2) “high mean/low variance” with � � 63 dB and � � 6 dB,
corresponding to RMS � 67 dB; and 3) “low mean/high variance”
with � � 30 dB and � � 18 dB, corresponding to RMS � 67 dB as
well. The linear voltage envelope E(t) was generated from the loga-
rithmic modulation signal n(t) by exponentiation, E(t) � 10�5�n(t)/20.
A continuous stimulus (termed trial block) was generated from alter-
nating four 5-s segments: the first segment was taken from distribu-
tions with low mean/low variance, followed by segments with low
mean/high variance, another segment with low mean/low variance,
and then high mean/low variance, with this sequence repeating 100
times. One-half of the 5-s segments were novel, whereas the other
one-half of these segments were repeated. Responses to one such
repeated segment for an example neuron are shown in Fig. 1B. Unique
and repeated trials were randomly interleaved. Overall, a given neuron
was probed with one to three trial blocks.

Finding relevant stimulus dimensions. To characterize stimulus
features most relevant for eliciting spikes from field L neurons, we
worked in the framework of the linear-nonlinear (LN) model (Meister
and Berry 1999; Shapley and Victor 1978). According to this model,
only stimulus variations along a small number of dimensions affect
the spike probability. The spike probability itself can be an arbitrary
nonlinear function of the relevant stimulus components. To find the

relevant stimulus dimensions for each of the neurons in our data set,
we used two different methods. First, we found one of the relevant
stimulus dimensions using the reverse correlation method (de Boer
and Kuyper 1968; Rieke et al. 1997) and correcting for stimulus
correlations (Schwartz et al. 2006). To achieve this, we first computed
a vector, the spike-triggered average (STA), by averaging all re-

Fig. 1. Firing rate predictions using one-dimensional (1D) and two-dimen-
sional (2D) linear/nonlinear models. A: a segment of the randomly varying
modulation signal � that specifies the local log-amplitude of the sound in
decibels (see MATERIALS AND METHODS). B: responses of a single unit to 32
repetitions of the modulation signal shown in A. In one-half of all trials for
each neuron, such repeated stimuli were presented (to use for predictions, as in
C), while in the other one-half of trials, unrepeated versions of the modulation
signal were presented and used to calculate the relevant dimensions and
nonlinear gain functions of the linear-nonlinear (LN) models. C: real (black)
and predicted firing rates for this example neuron using the 2D (pink) or 1D
(blue) LN model. Neuron “eb1940”.
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sponses that elicited a spike (Fig. 2A). The STA was then multiplied
by the inverse of the covariance matrix. We will refer to the resultant
vector as the decorrelated STA (dSTA; Fig. 2B). Because multiplica-
tion by the inverse of the stimulus covariance matrix often leads to
noise amplification at high temporal frequencies, we also computed
the “regularized” dSTA (rdSTA; Fig. 2C) using a pseudoinverse
(instead of the inverse) of the covariance matrix. A pseudoinverse
excludes the eigenvectors of the covariance matrix that are poorly
sampled (Theunissen et al. 2000). The cut-off for excluding the
eigenvectors was chosen to maximize the predictive power on a test
part of the data, not used in computing the STA. Overall, the features
computed as rdSTA and dSTA were very similar to each other, as well
as to the first features computed by maximizing information, which is
described next.

In the second line of analysis, the relevant stimulus features were
computed as dimensions in the stimulus space that accounted for the
maximal amount of information in the neural response (Sharpee et al.
2004). The first MID was found by maximizing the following func-
tion:

I(V) � �dxPV(x|spike)log2

PV(x|spike)

PV(x)
(1)

where PV(x) is the probability distribution of stimulus components
along dimension v, and PV(x|spike) is the analogous probability
distribution computed by taking only stimulus segments that led to a
spike. Equation 1 represents the amount of information between the
arrival times of single spikes and stimulus components x along a
particular dimension v (Adelman et al. 2003; Agüera y Arcas et al.
2003; Fairhall et al. 2006; Paninski 2003; Sharpee et al. 2004). This
function corresponds to the Kullback-Leibler divergence between
probability distributions PV(x|spike) and PV(x). Dimensions along

which these two distributions differ most are thus most affected by an
observation of a spike.

The details of the optimization algorithm are provided in Sharpee
et al. (2004) and supplemental information of Sharpee et al. (2006).
Briefly, information was maximized via a sequence of 1D line
optimizations along the gradient of information. During each line
optimization, points that led to decreases of information were occa-
sionally accepted with probability exp(��I/T), where �I is the
decrease in information associated with acceptance of the new dimen-
sions, and parameter T, “effective temperature”, controls the proba-
bility of accepting decreases in information of large magnitude.
Dimensions that led to an increase in information were always
accepted. The optimization procedure started with the value of effec-
tive temperature T � 1. The effective temperature was then decreased
by a factor of 0.95 after each line maximization, until it reached the
value of 10�5. After that, information was increased by a factor of
100, and the iteration continued. The maximum number of line
maximizations was 3,000. Performance of the current dimension was
evaluated on the test set after every 100 line maximizations. Upon
completion of the computation, we compared dimensions that ac-
counted for most information on the test set and the dimension that
accounted for most information on the training set. These dimensions
were similar; dimensions with the best performance on the test set
were used as the MIDs. The search for the first MID was initialized as
the STA. We have verified that optimization results starting from
random initial conditions were not different (see Fig. 2, D and E).
After the first MID was computed, we initialized the second dimen-
sion as a random segment of the stimulus and optimized a pair of
dimensions to capture the maximal amount of information about the
arrival times of the single spikes in this case. The corresponding
optimization function is given by:

Fig. 2. Comparison of different methods for characterizing neural feature selectivity. A: the dimension obtained as the so-called spike-triggered average (STA).
B: decorrelated STA (dSTA). C: regularized decorrelated STA (rdSTA). The first (D) and second (E) most informative dimensions (MID) (see text for method
description) are shown. In D and E, the MID results are plotted for optimizations starting with the STA (black line), and starting with a random stimulus segment
(gray lines denote mean 1 SD). The two cases are almost indistinguishable, which proves that the algorithm is not sensitive to initial conditions. Neuron
“soba1980”.

1843TWO-DIMENSIONAL ADAPTATION IN THE AUDITORY FOREBRAIN

J Neurophysiol • VOL 106 • OCTOBER 2011 • www.jn.org

 on O
ctober 14, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


I(V1, V2) � �dxPV1,V2
(x1, x2|spike)log2

PV1,V2
(x1, x2|spike)

PV1,V2
(x1, x2)

(2)

where x1 and x2 represent stimulus components along dimensions v1

and v2, respectively.PV1,V2
(x1, x2) represents the probability distribu-

tion of stimulus components along dimension v1 and v2, andPV1,V2
(x1,

x2|spike) is the analogous probability distribution computed by taking
only stimulus segments that lead to a spike. Dimensions v1 and v2

that, at the end, maximize Eq. 2 correspond to MID1 and MID2.
Typically, the MID1 profile changed little after it was optimized,
together with the second dimension. One of the advantages of such
optimization, which corresponds to the maximum likelihood estima-
tion of the LN model (Kouh and Sharpee 2009), is that nonlinear
aspects of the transformation from the relevant stimulus components
to the neural firing rate are built into Eqs. 1 or 2, which eliminates the
need to fit nonlinearities while searching for the relevant stimulus
features.

Nonlinear gain functions. Once the relevant dimensions v1 and v2

are computed, one can determine the 2D gain function that relates the
stimulus components along those dimensions to the neural firing rate.
This function is given by PV1,V2

(spike|x1, x2) and can be computed
using Bayes’ rule as P(spike)PV1,V2

(x1, x2|spike) /PV1,V2
(x1, x2). Here,

P(spike) is the average spike probability in a 4-ms time bin. The gain
functions with respect to relevant dimensions v1 and v2 considered
separately can be computed as proportional to PV1

(x1|spike)/PV1
(x1)

and PV2
(x2|spike)/PV2

(x2), respectively.
Information analysis. To compute information about the stimulus

carried by the arrival times of single spikes, Ispike, we analyzed
responses to a random segment of amplitude modulations (duration 5
s) repeated between 50 and 150 times. Based on these repeated
presentations, we computed the average firing rate r(t) for this pseu-
dorandom noise sequence. Information about the stimulus carried by
the arrival times of single spikes can then be computed as (Brenner et
al. 2000b):

Ispike �
1

T�dt
r(t)

r�
log2

r(t)

r�
(3)

where r� is the average firing rate. [More generally, the same expres-
sion can be used to compute information carried by the arrival time of
any spike pattern, in which case r(t) would represent the average
number of the spike patterns of interest per unit time.]

This information measure makes no assumptions about the number
of relevant stimulus dimensions, nor about the shape of the nonlinear
gain function describing the dependence of spike probability on the
relevant stimulus components. Therefore, it can be used to quantify
the performance of any model of a reduced dimensionality, such as
models based on the STA or MIDs.

The values of mutual information contain a positive bias, which
decreases as more data are collected (Brenner et al. 2000b; Nelken and
Chechik 2007; Strong et al. 1998; Treves and Panzeri 1995). To
correct for this bias, we computed information values based on
different fractions of the data (80–100%). We then used linear
extrapolation to find the information value projected if infinite num-
bers of spikes could be collected (Brenner et al. 2000b; Strong et al.
1998). This procedure was used to correct for bias in all information
values (Ispike and information along one or two dimensions v).

Finally, information obtained using multiple dimensions is some-
times adjusted for the addition of dimensions by subtracting the
information generated by a random dimension (Fairhall et al. 2006).
However, it should be noted that even a random dimension will be
able to account for some fraction of the real neural response, even in
the limit of infinite data (and after all of the bias corrections consid-
ered above are applied). The positive predictive power of any random
dimension is not an artifact, but is due to the fact that such a
dimension will always contain a nonzero component along the rele-

vant dimensions. In the case of uncorrelated stimuli, such effects are
typically small (Fairhall et al. 2006). However, the nonzero compo-
nents can be substantial, up to 90%, with natural stimuli (Sharpee et
al. 2004). In our data set, a single randomly selected dimension, on
average, accounted for a modest amount of information (4.5 � 1.8%),
which was not subtracted, because of the above arguments.

Determining the number of relevant features based on the spike-
triggered covariance method. To obtain an independent estimate of
the number of relevant features in each neuron, we analyzed the
spike-triggered covariance matrix (Bialek and de Ruyter van Steve-
ninck 2005; de Ruyter van Steveninck and Bialek 1988). The number
of significant eigenvalues depends on sampling (Bialek and de Ruyter
van Steveninck 2005; de Ruyter van Steveninck and Bialek 1988;
Rust et al. 2005; Schwartz et al. 2006). We first estimated the number
of significant eigenvalues by computing the eigenvalue spectrum
based on different fractions of the data, from 10 to 100%. Eigenvalues
that were stable with respect to the fraction of the data used were
judged to be significant. To make this analysis quantitative, we
computed the eigenvalue spectrum based on spike trains shifted with
respect to the stimulus by a random number with a minimum value
(Bialek and de Ruyter van Steveninck 2005). The minimum value was
equal to the length of the kernel: 100 ms for most cells and 160 ms for
three cells. Eigenvalues computed in such a manner are limited to a
band near zero (Bialek and de Ruyter van Steveninck 2005). This fact
can be used to discriminate significant eigenvalues from nonsignifi-
cant eigenvalues. Those eigenvalues of the real spike-triggered cova-
riance matrix that exceeded the range of values observed upon
randomly shifting the spike train relative to the stimulus were judged
to be significant. A total of 3,000 randomly shifted spike trains were
analyzed for each neuron. Stimulus dimensions that were associated
with the first two significant eigenvalues were similar to the STA
and/or to the first two most informative features, if we accounted for
the expected broadening due to stimulus correlations.

Fitting relevant dimensions with Hermite functions. To characterize
the shapes of relevant dimensions, we used a basis set formed by the
first three Hermite functions (Abramowitz and Stegun 1964; Victor et
al. 2006). The Hermite functions are orthogonal to each other and
form a complete basis, meaning that any function could, in principle,
be represented in terms of a sufficient number of linear combinations
of Hermite functions. For relevant dimensions of field L neurons,
we found that three Hermite functions were sufficient. The first
three Hermite functions are described by the following equations:

H0�t� � ��1⁄4�e�t2⁄2�, H1�t� � �2��1⁄4t�e�t2⁄2�, and H2�t� �

��1⁄4�2�2t2 � 1�e�t2⁄2. We used nonlinear least squares data fitting
by the Gauss-Newton method as implemented in Matlab to find the
best-fitting linear coefficients with respect to H0[(t � t0)/�], H1[(t �
t0)/�], and H2[(t � t0)/�] for each of the relevant dimensions. The
parameters t0 and � describe the centering (position of the peak in the
Gaussian envelope) and scaling (the width of the Gaussian envelope).
We obtained very similar fitting results, regardless of whether differ-
ent relevant dimensions of one neuron were constrained to have the
same pair of values for parameters t0 and � or not.

Estimating jitter in spike timing. We used the procedure described
in Aldworth et al. (2005) to estimate spike timing jitter in our
responses. In brief, this method consists of iteratively performing the
following two steps. The first step was to compute the STA as an
average stimulus segment preceding each spike in a spike train. Then,
the timing of each spike in the spike train was adjusted to maximize
correlation between the preceding stimulus segment and the current
estimate of the STA. Large shifts in the timing of the spike were
penalized according to a Gaussian prior. The width of the Gaussian
distribution was set to the standard deviation � of the spike time jitter
distribution found during the previous iteration. On the first iteration,
this value was set to 1 ms or 4 ms when working with spike trains
binned at 1-ms and 4-ms resolution, respectively. The maximal time
by which spikes could be shifted forward and backward in time was
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set to � of the spike time jitter distribution (which could vary during
optimization) and 3 ms, respectively. Larger shifts backward in time
than 3 ms were taken to violate the causality condition for eliciting a
spike before a significant portion of the relevant stimulus feature
occurred. Returning to step one, the new estimate of the STA was
obtained based on updated latencies between stimulus segments and
spikes.

We quantified the similarity between the 2D relevant spaces esti-
mated with and without prior dejittering using a measure termed
subspace projection (Rowekamp and Sharpee 2011), which ranges
between 0, if subspaces do not overlap, and 1, for a perfect match. In
one dimension, this measure corresponds to a dot product between
two vectors normalized to length 1, whereas in two dimensions, it
corresponds to computing the dot product between normals to the two
estimates of the relevant plane, and taking the square root. The
following expression describes this mathematically with u→1 and u→2
representing the first and second dimensions from one 2D subspace
and v→1 and v→2 representing the first and second dimensions from the
other 2D subspace:

� �� �(u→1v→1)(u→2v→2) � (u→1v→2)(u→2v→1)�
��(u→1u→1)(u→2u→2) � (u→1u→2)2��(v→1v→1)(v→2v→2) � (v→1v→2)2�

The resultant quantity is independent of whether individual dimen-
sions are normalized or orthogonal.

RESULTS

2D description of feature selectivity in field L. We focused
on how auditory neurons encode a single aspect of an auditory
stimulus, namely its time-varying log amplitude, which has
previously been shown to play a critical role in the responses
of higher-order auditory neurons in this species (Gill et al.
2006; Nagel and Doupe 2006; Theunissen and Doupe 1998)
and awake primates (Malone et al. 2007; Scott et al. 2011;
Zhou and Wang 2010), as well as in speech recognition in
humans (Shannon et al. 1995). To isolate responses to the log
amplitude, we used a stimulus that segregated responses to the
slowly varying amplitude modulation envelope from a rapidly
varying “carrier” signal (see MATERIALS AND METHODS; Fig. 1
illustrates a sample trace of log-amplitude waveform, and the
neural responses to it). The modulation envelope was designed
to capture the amplitude distribution and temporal frequency of
natural sounds. Rapid transitions to and from silent periods,
which are common in natural sounds, lead to amplitude distri-
butions that are strongly non-Gaussian (Escabi et al. 2003;
Singh and Theunissen 2003). However, the distribution of
log-amplitudes can be more closely approximated by a Gauss-
ian (Nelken et al. 1999). Natural stimuli are also dominated by
slow changes in amplitude, with power spectra that decrease as
a function of temporal frequency (Lewicki 2002; Singh and
Theunissen 2003; Voss and Clarke 1975). To capture both of
these properties of natural sounds, the randomly varying log-
amplitude was generated according to a correlated Gaussian
distribution whose power spectrum decayed exponentially with
the characteristic frequency of 50 Hz (Nagel and Doupe 2006).
The diverse fluctuations present in this stimulus ensemble
make it possible to determine how different neurons analyze
incoming stimuli with minimal assumptions. Moreover, the
mean and variance of this stimulus can be systematically
altered to assess the dependence of coding on stimulus statis-
tics (see MATERIALS AND METHODS).

To characterize the signal processing properties of individ-
ual neurons in the zebra finch auditory forebrain, we searched
for stimulus dimensions that capture the maximum information
about the recorded neural response (Sharpee et al. 2004); see
Fig. 2 for a comparison with other spike-triggered methods
(Schwartz et al. 2006). The method of MID allows us to ask
what features, or dimensions, of a stimulus best account for the
neuron’s response, and to estimate what fraction of the total
information carried by the neuron is captured by each of these
features (Nelken and Chechik 2007). This technique extends
linear methods of relating stimulus dimensions to neural re-
sponses in several ways (Christianson et al. 2008): more than
one relevant stimulus dimension can be obtained; dimensions
with a highly nonlinear relationship to neural firing can be
extracted; finally, the MIDs are not influenced by correlations
or structure in the stimulus. Furthermore, the variance in MID
filters across different data subsets is the smallest possible for
any unbiased method, including spike-triggered covariance and
its information-theoretic generalizations (Pillow and Simon-
celli 2006), because MIDs saturate the Cramer-Rao bound
(Kouh and Sharpee 2009). We used the MID method sequen-
tially to identify first the most informative dimension of our
stimulus and then the second most informative dimension. The
primary (maximally informative) dimension was always very
similar to that derived from a STA (Atencio et al. 2008;
Depireux et al. 2001; Eggermont 1993; Eggermont et al. 1983;
Epping and Eggermont 1986; Hsu et al. 2004; Kim and Young
1994; Klein et al. 2000; Klein et al. 2006; Machens et al. 2004;
Woolley et al. 2006; see also Fig. 2).

We found that individual neurons in field L showed signif-
icant sensitivity to (at least) two dimensions of the log ampli-
tude of the sound envelope (for the remainder of the paper, we
shall refer to this log amplitude as “the stimulus”). Although a
1D model based on just the primary stimulus component could
typically replicate the major peaks in the neural firing rate,
higher peaks, as well as valleys, could be predicted more
accurately with a 2D linear nonlinear model (see Fig. 1C for an
example). At the same time, the 2D model overestimated the
height of some intermediate peaks. To check whether the 2D
model provided a better description overall, we compared the
percentage of information explained by the two models. For
this example cell and stimulus condition, the 1D and 2D
models accounted for 67.1 � 0.5% and 77.5 � 0.5% of the
information carried by independent spikes, respectively. The
corresponding values in terms of the percentage of variance in
the firing rate accounted by the 1D and 2D models were 78.4 �
0.3% and 87.1 � 0.4%, respectively. All predictions were
made on a novel stimulus segment not used to calculate either
the relevant dimensions or the associated nonlinear gain func-
tions. The spike-triggered covariance method, a complementary
method for estimating the number of dimensions to which the
firing rate is sensitive (Agüera y Arcas et al. 2003; Bialek and
de Ruyter van Steveninck 2005; Brenner et al. 2000a; de
Ruyter van Steveninck and Bialek 1988; Schwartz et al. 2006;
Touryan et al. 2002) also indicated two significant dimensions
for this cell (see MATERIALS AND METHODS), providing additional
evidence for the 2D encoding realized by this cell.

Across the population of cells, the 2D model accounted, on
average, for 66% of the information carried in the arrival of
single spikes (Fig. 3). In the large majority of cells (63/74), the
2D model accounted for over one-half the total information in
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the spike train, reaching values as high as 90% and 100% for
some cells. Similarly, in terms of the percentage of variance in
the firing rate, the 2D model accounted, on average, for 84% of
this variance, again reaching values close to 100% for some
cells, and greater than 90% for almost one-half of the neurons
(33/74). By comparison, the 1D models accounted, on average,
for 52% of the information carried in the arrival of single
spikes and 72% of the variance in the firing rate. For all cells
in our data set, the 2D model accounted for significantly more
information (P � 0.02, t-test) and variance (P � 0.024, t-test)
than the 1D models. The 2D processing across the population
was also supported by the spike-triggered covariance method
analysis: the distribution of the number of significant dimen-
sions for each cell, across the population of neurons, peaked at
2 (Fig. 3A, inset). Thus auditory processing in the songbird
forebrain is based on at least two dimensions, which together
provide a good description of neural responses for a majority of
cells in our data set.

Effects of stimulus mean on the primary and secondary
dimensions. A previous analysis using a 1D linear/nonlinear
model demonstrated that, for many field L neurons, the shape
of the STA (equivalent to the primary dimension here) gradu-
ally changed with increasing mean stimulus amplitude from a
more unimodal filter to a more biphasic one (Nagel and Doupe
2006). Here, we report that the secondary dimensions are
affected just as strongly. In Fig. 4, we provide examples of the
two dimensions computed under low and high mean stimulus
conditions for three neurons. In each plot, zero represents the
time of the spike, and the shape of the waveform preceding the
spike indicates a feature of the stimulus that is strongly asso-
ciated with fluctuations in the firing rate. When sounds were
soft, the two dimensions describing the feature selectivity of a
single neuron typically represented the low-pass filtered stim-
ulus (the local time-average or mostly uniphasic feature) and
its first time differential (biphasic feature; Fig. 4A, columns

1–3, black lines). When sounds were loud, the two dimensions
represented the low-pass filtered first and second time differ-
ential of the stimulus waveform (Fig. 4B, columns 1–3, dark
gray lines). As this figure illustrates, either the first or the
second dimension could approximate the derivative of the
other dimension (in each case, the calculated derivative of one
of the dimensions is shown on the other dimension as a thick
gray line, for comparison). For example, the second dimension
of neuron 1 was (qualitatively) the time derivative of this
neuron’s primary dimension under both low and high mean
conditions. In example neuron 2, the first dimension was the
time derivative of the second dimension in the low mean
condition, but not in the high mean condition, where the second
dimension was approximately the time derivative of the first
dimension. Finally, example neuron 3 illustrates the case
where the role of the dimensions was reversed compared with
neuron 2.

Although the simplest examples of dimensions were entirely
averages or differentials, across all cells the relevant dimen-
sions were best described by a mixture of profiles correspond-
ing to the local time average and time differentials of the
stimulus, such as the feature shown in Fig. 4A, column 2, for
the first dimension. To quantitatively describe such profiles, as
well as to test in general how well the primary and secondary
dimensions could be approximated by linear combinations of
the local time average and various differentials of the stimulus,
we fitted each dimension with a linear combination of orthog-
onal Hermite functions of zero, first, and second order. The
zeroth-order Hermite function is a Gaussian, and the first-order
Hermite function is proportional to the time differential of the
zeroth-order function. The second-order Hermite function is a
linear combination of the Gaussian and its second time differ-
ential (see MATERIALS AND METHODS). Therefore, the three coef-
ficients in the Hermite expansion of a given relevant stimulus
dimension can capture the degree to which this dimension

Fig. 3. A population analysis of predictive power based on 2D linear/nonlinear models. A: the percentage of total information between spikes and stimulus
accounted for by the 2D model vs. the percentage accounted for by the 1D model based on the first MID alone. Inset shows a histogram of the number of
spike-triggered covariance method dimensions for each cell in our data set. The distribution peaks at two dimensions for all stimulus conditions. B: the percentage
of variance in the firing rate accounted for by the 2D model vs. the percentage accounted for by the 1D model based on the first MID alone. The percentages
for information and variance were computed using a novel segment of the data. Error bars are standard errors.
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describes sensitivity to a local time average of the stimulus
(H0), its rate of change (H1), and the second time differential or
acceleration (H2), all averaged over the duration of the
Gaussian.

Overall, both the primary and secondary dimensions under
all stimulus conditions could be well approximated by linear
combinations of the first three Hermite functions. The fits
yielded correlation coefficients of 0.93 � 0.08 (SD) for the first
stimulus dimension and 0.83 � 0.17 (SD) for the second
stimulus dimension. The fitting results (red curves) for the
three example neurons from Fig. 4 are plotted together with
their measured profiles in Fig. 5. Because the relevant dimen-
sions of field L neurons could be fitted in a near-perfect manner
using the first three Hermite coefficients, we could now use
their relative magnitude to analyze differences between the
shapes of dimensions under different stimulus conditions. A
population analysis is provided in Fig. 6. In this figure, each
triplet of Hermite coefficients describing a particular dimen-
sion for a neuron is plotted as a point within an equilateral
triangle. Such a representation is possible because the sum of
distances from a point within the triangle to each of its three
sides is the same for all points within the triangle. We used a

normalization such that the sum of absolute values of the
Hermite coefficients for each dimension was equal to 1. Then
the distance from a data point to the side of the triangle
opposite to the vertex gives the magnitude of the component
associated with that vertex. For example, the vertex-point
labeled |H2| would correspond to the case of H0 � 0, H1 � 0,
and H2 � 1, whereas points along the side connecting vertices
|H0| and |H1| would have H2 � 0. Results in Fig. 6, A–D,
provide pairwise comparisons between dimensions for all of
our data. Here, data points corresponding to each cell are
connected, and the dark vector shows the mean of all cells.

The population analyses demonstrate four phenomena. First,
in the case of soft sounds, the primary and secondary dimen-
sions complement each other with respect to the relative
magnitude of integrator and differentiator components (Fig.
6A). That is, cells with a large H0 component in the primary
dimension (i.e., close to the vertex H0) have a larger H1 and
smaller H0 in the secondary dimension, and vice versa. This is
evident both as the clustering of many individual cells across
the base of the triangle, along the integration-differentiation
axis, and in the orientation of the mean population vector.
Second, a similar complementarity was observed in the case of
loud sounds (Fig. 6B), but along the differentiation-accelera-
tion axis. Here, although the magnitude of H0 is nonzero, cells
in which the primary dimension has a large H1 component have
a larger H2 and smaller H1 components in the secondary
dimensions. Next, comparing only the primary dimension
between the conditions of high and low mean, we recover our
previous findings (Nagel and Doupe 2006) that the primary
dimensions change from a uniphasic shape (large H0) for soft
sounds to biphasic shapes (large H1) for loud sounds (Fig. 6C).
The final observation is illustrated in Fig. 6D, where the

Fig. 5. The relevant dimensions at low and high sound volume fitted with
Hermite functions. Notations and neurons are the same as in Fig. 4. Red lines
indicate fits using the three lowest order Hermite functions. Numbers within
each panel show correlation coefficients between the relevant dimensions and
their fits.

Fig. 4. Shapes of the primary and secondary stimulus dimensions are strongly
affected by mean sound volume. A: the primary and secondary stimulus
dimensions for three example neurons are shown when the mean sound volume
was low. The x-axis represents the time before a spike (at zero), and the y-axis
represents normalized amplitude of the filter. B: results for the same neurons
when the mean sound amplitude was high. Dark lines show the mean and
standard deviation of dimensions as derived from data. Light gray lines show
first time derivatives of the other dimension under each stimulus condition.
Derivative comparisons are provided for the dimensions that were better
approximated by the time derivative of the other dimension in the pair. From
left to right, columns neuron IDs are “ra2200”, “soba1740wide”, and
“udon2120”. See also Fig. 5 for fits using Hermite functions.
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secondary dimensions vary along the differentiation-accelera-
tion axis with increasing stimulus mean.

Figure 6E provides a further graphical comparison of dimen-
sions across all cells and stimulus conditions, with each col-
umn corresponding to a single cell. Here, we used red, green,
and blue (RGB) colors to represent position within the triangle

of Hermite coefficients, as shown in the reference triangle to
the bottom of Fig. 6E. In Fig. 6E, red-green colors, correspond-
ing to integration-differentiation, dominate in the low mean
stimulus condition, whereas green-blue colors (differentiation-
acceleration) dominate in the high mean stimulus condition. As
described above, either the integration or differentiation di-
mensions could play the dominant role in the low mean
stimulus conditions. For example, the cell marked with a circle
has a primary dimension that is integration-like, whereas the
cell marked with an upward green triangle has a primary
dimension that is differentiation-like. Similarly, in the case of
loud sounds, the primary dimension of the cell marked with a
circle is primarily differentiation-like, whereas that of the cell
marked with a downward blue triangle is primarily acceleration-like.

Together, these analyses demonstrate that, when the mean
stimulus was low, field L neurons encoded the temporal vari-
ations of the stimulus through measurements of its local time
average and the first differential. When the mean stimulus was
large, field L neurons became insensitive to the local time
average of sound log-amplitude and encoded primarily its
variations relative to the mean, i.e., its first time differential.
However, neural encoding of the first time differential of the
stimulus at high mean intensity was again 2D. This time, the
two relevant dimensions were the first and second time differ-
entials of the stimulus. If we define the waveform of interest in
the high mean condition as the first time differential of the
sound log-amplitude, then the first and second time differential
of the sound log-amplitude are again the local time average and
the first time differential of this “waveform of interest.” Thus,
although neurons encoded different “features” of the stimulus,
depending on the mean sound amplitude, namely the time-
varying log-amplitude itself for soft sounds and its first time
differential for loud sounds, the encoding in both cases was
based on local time-averaged measurements of the feature
waveform and the first time differential of this waveform.

How fast did the relevant dimensions change shape follow-
ing a change in the stimulus mean? Our previous analysis of
single dimensions (Nagel and Doupe, 2006) indicated that
changes in relevant dimensions were completed within 100 ms
after a change in mean stimulus level. However, because of the
fast time scales involved, it was not possible to monitor these
changes dynamically and provide a lower bound on the adap-
tation time. Here we attempted to estimate the adaptation time
more precisely by observing 1) how fast the effects of adap-
tation to the previous stimulus condition “wear off” after
switching to a new stimulus condition, and 2) how fast the
firing rate plateaus following adaptation to a new stimulus
condition. In Fig. 7A, we compared the average neural re-
sponse across the population to the identical (low mean/low
variance) stimulus segment when it was preceded by either
segments with high mean/low variance (black line) or by
segments with low mean/high variance (gray line). We found
that the population response to this identical stimulus differed,
depending on the statistics of stimuli that preceded it, which is
the classical definition of adaptation. The difference in the
magnitude and latency of responses to the same stimulus
disappeared after �50 ms and 100 ms, respectively. Thus, in
the case of adaptation to the low mean stimulus condition, one
can expect to find time constants on the order of 50–100 ms.
The time constants of adaptation to the high mean stimulus
condition were similarly fast (Fig. 7B). Because of the order in

Fig. 6. A population analysis of the shapes of relevant dimensions. The triplet
of Hermite coefficients is represented as a dot within an equilateral triangle.
A–D: comparison of pairs of dimensions under either the same or different
stimulus conditions. Data from each cell are linked, and the dark vector shows
the population mean. A: comparison of two relevant dimensions under the low
mean stimulus condition. B: same as A, but for the high mean stimulus
condition. C: comparison of primary dimensions between the low and high
mean stimulus conditions. D: same as C, but for the secondary dimensions.
E: by using color to represent the location within the reference triangle
(bottom), we could compare the primary and secondary dimensions for each
neuron within and across stimulus conditions (each neuron is represented in a
vertical column). Red-green colors, corresponding to integration-differentia-
tion, dominate in the low mean stimulus condition, whereas blue-green colors
(differentiation-acceleration) dominate in the high mean stimulus condition.
Symbols (circle, upward and downward triangles) label points corresponding
to the example neurons from Fig. 4.
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which we played our stimuli, segments with high mean inten-
sity were always preceded by segments with low mean/low
variance. Therefore, we could not make a plot exactly analo-
gous to that in Fig. 7A, that is, with a comparison of an
identical high mean stimulus preceded by either high or low
mean intensity stimuli. However, we could observe the average
change in firing rate calculated from all of the different unre-
peated noise segments, during the transition from low to high
mean stimuli, for each cell and then across the population.
Because this average rate was taken across many different
noise segments, the stimuli were, on average, the same after the
transition to the high mean condition. Thus the observation of
the decrease in the average firing rate after the change in mean
(Fig. 7B) also provides direct evidence of adaptation. The
corresponding time constant was 61 � 4 ms, similar to the time
scale of adaptation from the high to low mean stimulus level.

When neural responses are modeled using the LN model,
differences in the mean firing rate, like those seen here, can be
explained by differences in the shapes either of relevant di-

mensions, or of nonlinear gain functions. However, in our prior
work, we found that, following a switch from low- to high-
stimulus mean, changes in nonlinear gain functions (that could
not be explained by filter changes) took place over the time
scales of seconds (unlike the fast time constants observed in
gain function dynamics with changes in variance) (Nagel and
Doupe 2006). This suggests that changes in the mean firing rate
with changes in stimulus intensity arise primarily as a result of
changes in the shapes of relevant dimensions. To assess how
the relevant dimensions were changing without tackling the
problem of estimating them with very fine time resolution, we
instead estimated them during the last 2.5 s of each stimulus
segment and then observed how well these “stationary” dimen-
sions could predict the initial responses to the same stimulus.
For this calculation, we limited filter duration to 48 ms,
because most filters were zero for longer latencies, as can be
seen in Fig. 4. We then computed the amount of mutual
information captured by these stationary filters about neural
responses soon after the switch, using 48-ms computation

Fig. 7. The time course of adaptation. A: the mean population response to the same (repeated) stimulus segment in the low mean/low variance condition is
different, depending on the previous state of adaptation. Neurons were previously adapted to either the high mean/low variance condition (black line) or the low
mean/high variance condition (gray line). The effect of the previous adaptation condition disappeared after 100 ms. Inset at top right shows the stimulus as it
transitions from two different stimulus statistics conditions to the low mean/low variance stimulus condition (transition is marked by tick marks). B: the mean
firing rate across the population of cells recorded, after a switch from low to high mean stimulus. The mean firing rate at each moment in time was estimated
for each cell from a large number of different (unrepeated) noise segments and then averaged across cells. Thus stimuli are the same, on average, at each point
in time. The decrease in mean firing rate reflects the difference in average neural responses to the same average stimuli, indicating an adaptive process. The solid
black line shows an exponential fit to the data (black), and the corresponding time constant is provided in the inset. P value corresponds to an F-test comparing
an exponential fit with the null hypothesis of no time dependence. Error bars show standard errors of the mean. C: the first MID estimated in the stationary state
provides an increasingly better description of neural responses with time following a switch to high mean stimulus condition. Each data point represents the
average amount of information explained across the population of neurons to the same stimulus segment. Black line and inset are as in B. The larger variability
in C compared with B stems from the fact that it is based on the population neural response to a single stimulus segment (repeated responses to the same stimulus
are required for the information calculation), whereas, in B, averaging was done with respect to different stimulus segments and thus much more data.
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windows, each time shifting the computation window by 4 ms.
A time-dependent increase in the amount of information ex-
plained after a switch in the mean sound volume would
indicate that the stationary form of the relevant dimensions
becomes an increasingly more appropriate description of neu-
ral responses. (Mutual information already takes nonlinear
relationships into account, so that this increase could not be
due to a change in nonlinearities.) Indeed, we find that the
predictive power increased with a time constant of 110 � 70
ms (Fig. 7C), which is consistent with the measurements of
firing rate adaptation (Fig. 7B) and of responses to the same
stimulus in two different adaptation conditions (Fig. 7A). Thus
several lines of evidence suggest that changes in the relevant
dimensions in the auditory system are not instantaneous, as
would be expected if they simply reflected static nonlinearities
(Borst et al. 2005; Hong et al. 2008), but reflect “fast adapta-
tion,” similar to that described in the retina (Baccus and
Meister 2002; Victor 1987).

Contribution of secondary dimensions to neural firing in-
creases with stimulus variance. Prior 1D analyses of field L
neurons found that, in contrast to the effects of mean ampli-
tude, changing the stimulus variance had little effect on either
the mean firing rate or the shape of the relevant dimensions
(Nagel and Doupe 2006). Similarly, no changes in the shapes
of multiple stimulus dimensions were found in cat dorsal
cochlear nucleus (Reiss et al. 2007). Here too we found little
effect of stimulus variance on the shapes of the two relevant
stimulus dimensions. In all but 4 of 23 neurons for which the
responses to both stimulus conditions were available, neither of
the Hermite coefficients was significantly different in the
different variance conditions (P � 0.068, see Table 1). In the
remaining four neurons, at least one Hermite coefficient was
affected, but no systematic trends were evident.

However, in the 1D study of field L, as well as more
generally for studies of neurons in other sensory modalities
(see DISCUSSION), changing the stimulus variance had a strong
effect on the form of the nonlinear gain function. For multidi-
mensional analyses, the nonlinear gain function identifies how
stimulus components along the relevant dimensions determine
the neural firing rate. For example, a strong output value along
one component may drive the neuron to fire, whereas a strong
value along another component may inhibit it (Chen et al.
2007; Maravall et al. 2007; Rust et al. 2005). A neuron may
show threshold and saturation effects in its response to the
stimulus components. Finally, the stimulus components can
interact in nonlinear ways. For example, a coincidence-detector

cell might stay quiet if only one of the components is strong,
but fire robustly when both components are strong. In general,
the relationship between stimulus components and neural firing
may be highly nonlinear.

We found that, even within one stimulus condition, e.g., low
mean and high variance, nonlinear gain functions had diverse
relationships with respect to the two relevant stimulus compo-
nents. These nonlinear relationships can be visualized by
plotting the average firing rate of the neuron as a function of
the normalized stimulus component along the relevant dimen-
sions (see MATERIALS AND METHODS). Examples of such visual-
izations are shown in Fig. 8. The two 1D plots along the sides
of each gray-scale plot show the average firing rate (y-axis) as
a function of one of the stimulus components (x-axis) consid-
ered independently, while the heat map in the center shows
how the firing rate (gray scale) depends on the coincidence of
the two components. Figure 8, A and B, illustrate that the 2D
nonlinear gain functions could take very different shapes. With
respect to the primary stimulus component only, the neural
firing rate functions were typically sigmoidal functions (24/29
neurons in this stimulus condition). However, in some cases,
the firing rate could be significantly nonmonotonic, decreasing
for large positive component values (cf. Fig. 8B, b1). The
dependence of the firing rate on the secondary stimulus com-
ponent was even more varied. For example, in Fig. 8A, a2, the
firing rate increased for both positive and negative values of the
stimulus components (although not completely symmetrically),
whereas, in Fig. 8B, b2, the firing rate was suppressed by both
positive and negative stimulus components. Across the data set
for this stimulus condition, the firing rate was enhanced by
large components (either positive or negative) along the second
stimulus dimensions in 9/29 cases and suppressed in 7/29. The
nonlinear gain functions of the remaining cells were of a
complex shape that could not be easily classified. Thus field L
neurons performed a wide variety of computations with respect
to the stimulus time-average and its sequential time deriva-
tives.

Next, we examined how these nonlinear gain functions were
affected by a change in the stimulus variance. Changes in
stimulus variance are known to affect the gain with respect to
the primary dimension (Brenner et al. 2000a; Fairhall et al.
2001; Nagel and Doupe 2006; Reiss et al. 2007; Smirnakis et
al. 1997). Recent analysis of multidimensional nonlinearities in
the primary somatosensory cortex demonstrated that adaptation
to variance led to a common rescaling of the gain with respect
to the primary and secondary stimulus components (Maravall
et al. 2007). In the case of field L neurons, we also generally
found that the width of the input range over which the firing
rate varied from its minimal to maximal values increased with
variance. Therefore, in the following, we present and discuss
nonlinear gain functions in rescaled units where the stimulus
components are measured in units of their standard deviation
(Fig. 8). In these rescaled coordinates, the nonlinear gain
functions in different conditions should overlay each other if
the gain rescales perfectly with adaptation to variance. How-
ever, the shapes of gain functions, especially with respect to
secondary dimensions, in these rescaled coordinates were usu-
ally shallower in the low-variance condition and became
steeper or more peaked in the high-variance condition (Fig. 8,
C and D). This suggests that the contribution of secondary
dimensions increases with variance. This phenomenon can be

Table 1. Relevant stimulus dimensions are not affected by
changes in stimulus variance

And Hermite
Coefficient 1

And Hermite
Coefficient 2

And Hermite
Coefficient 3

Dimension 1 P � 0.073 P � 0.11 P � 0.091
Dimension 2 P � 0.08 P � 0.068 P � 0.13

The first and second relevant dimensions were fitted using the first three
Hermite functions. We used t-tests to compare, on the neuron-by-neuron basis,
the similarity of coefficients in the Hermite expansion of relevant dimensions
computed under the low mean/low variance and low mean/high variance
stimulus conditions. In only 4 out of 23 neurons did one or more of the Hermite
coefficients change significantly (P � 0.05). This table shows the smallest P
values for each comparison across the remaining population of 19 neurons.
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quantified by the relative increase in information explained
when the LN model is expanded to include the two dimensions
(Fig. 9). A perfect rescaling along both dimensions, with no
change in shape of the 2D gain function, would leave the
relative increase in information unchanged. In contrast, either
changes in the shape of the gain function, or unequal rescaling
of gain with respect to the two relevant dimensions would
cause this information ratio to deviate from 1. Across the
population of neurons, the contribution of the second dimen-
sion was significantly larger in the high-variance compared
with the low-variance condition (Fig. 9; P � 0.016, paired
Wilcoxon test). In addition, this change reached significance in
35% of neurons considered individually (8/23). Figure 8 illus-
trates gain functions for the example neurons marked in Fig. 9:
the difference in relative information between Fig. 8B and Fig.
8D was significant (P � 0.01, t-test), whereas, although the

same trend was there in Fig. 8, A and C, it did not reach
significance. In summary then, adaptation to stimulus variance
can alter the degree to which relevant dimensions influence
neural firing, even in cases where the relevant dimensions
themselves are not affected. Thus multidimensional feature
selectivity confers an extended variety of adaptive behaviors
that go beyond adaptive changes available for separate encod-
ing of stimulus components.

A possible role of spike-time jitter. Our multidimensional
studies of field L suggest a striking sensitivity of neurons to
sequential time derivatives of the stimulus. One mechanism
that could give rise to a sensitivity of neural responses to time
derivatives is jitter in spike timing (Aldworth et al. 2005;
Dimitrov and Gedeon 2006; Dimitrov et al. 2009; Gollisch
2006).That is, if the neuron is sensitive to a single feature, but
spikes arrive at slightly different times, it might appear that the

Fig. 8. Effects of stimulus variance on the 2D nonlinear gain functions for two example neurons (A/B and C/D). Gray-scale plots show the firing rate in Hz as
a function of the two relevant stimulus components. Thin black lines show regions where values are �2 SE. The average firing rate as a function of individual
components of the stimulus is shown in side plots (gray and black lines for the high- and low-variance conditions, respectively; the gray lines of the high variance
condition are replotted in the right half of the figure for comparison). Stimulus components are normalized to have unit variance and plotted in units of standard
deviation. Top row is one neuron (“udon2120”); bottom row is a different neuron (“eb1940”). Although the gain of 2D functions shows some rescaling with
stimulus variance (compare columns), it is not complete for secondary dimensions, and in some cases (e.g., bottom row) the shape of the secondary filters can
change qualitatively.
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neuron is sensitive to two slightly displaced features, which
could equivalently be described as a sensitivity to the feature
and its first time derivative. However, as noted in Dimitrov and
Gedeon (2006), time derivatives are not always due to the
presence of time jitter. To check for these effects, we first
estimated the amount of time jitter in these data. Two methods
have been discussed for estimating jitter in spike timing in the
literature. One involves separating the spike trains into
“events” (Berry et al. 1997) and then measuring directly the
variance in the arrival times of individual spikes within the
events. This approach works well when events are clearly
defined by the absence of spikes in certain segments of the
repeated data. Analysis of jitter for one such event (underlined
in red in Fig. 1B) yielded an estimate of 0.75 ms for jitter in the
timing of the first spike across different trials. However, such
clear separation of events is not always possible. Another
method for estimating jitter in spike timing is to optimize the
shape of relevant dimensions while allowing shifts in the times
of the spikes with a penalty term that depends on the magnitude
of the shift (Aldworth et al. 2005; Dimitrov and Gedeon 2006;
Dimitrov et al. 2009; Gollisch 2006). This method has the
advantage of not relying on the separation of spike trains into
events. Implementing the technique described in Aldworth et

al. (2005; see MATERIALS AND METHODS), we found that jitter for
all cells, except one, was in the sub-millisecond range
(Fig. 10A). The fact that the three outlier points (with spike
time jitter �5 ms, see Fig. 10A) belonged to the same cell
indicates that the optimization procedure allowed for the pos-
sibility of larger spike jitter, but also that the result that all
other cells have spike time jitter of �1 ms was robust. This
analysis was carried out on spike trains binned at 1-ms reso-
lution to better estimate the amount of time jitter in the data. To
check more directly for the role of time jitter, we also applied
the dejittering technique to spike trains binned at the 4-ms
resolution at which all other analyses of feature selectivity
were carried out, and then reestimated features. Figure 10, B
and C, illustrates with typical examples that the time-derivative
characteristics of the shapes of relevant dimensions persist
even after dejittering. Across the population, the 2D relevant
spaces estimated with and without prior dejittering were highly
similar. We quantified the similarity between the two spaces
using a measure termed subspace projection, which ranges
between 0, if subspaces do not overlap, and 1 for a perfect
match (Rowekamp and Sharpee, 2011; see MATERIALS AND

METHODS). Using this measure, we find that, except for one
neuron in the low mean condition and three neurons in the high
mean condition that had subspace projection values �0.4, the
rest of the population had subspace projection values ranging
from 0.85 to 0.9999 (mean 0.98), both in the low and high
mean conditions. Thus the estimation of two relevant features
was not affected by time jitter in almost all cases.

Possible benefits of derivative sampling. As we have seen
above, when the sound level changes, both the primary and
secondary dimensions undergo marked changes in their shapes.
However, the systematic relationship between the dimensions,
in which one of them approximates the time differential of the
other dimension, persists, despite such different stimulus con-
ditions. This experimental result raises the possibility that
including time differentials is functionally significant, at the
single-neuron level, for the encoding of temporally modulated
sounds. One possibility that we will explore here is that the
inclusion of time differentials is a useful strategy for represent-
ing continuous input signals using discrete spike-based repre-
sentations, especially in the case of naturalistic stimuli.

It is well known that any continuous waveform can be
represented without any information loss with a sequence of
discrete measurements taken at a frequency equal to or greater
than the so-called Nyquist frequency, which is twice the
maximal frequency W in the input signal (Fig. 11A). However,
this traditional sampling strategy is not the only lossless way to
represent a continuous waveform with discrete data points. The
same continuous waveform can be represented using pairs of
measurements, where the values of the signal and its first time
differential are recorded at one-half the Nyquist rate (Fig. 11B).
In the absence of noise, either of these sampling strategies can
be used to reconstruct the incoming continuous waveform
without any bias (Shannon 1949). The two sampling strategies
can be related to one another by noting that measurements of
a function value and its time derivative approximate the sum
and difference of two measurements of the function at nearby
points in time. Therefore, one can think of the strategy of
simultaneously sampling the values of the signal and its first
time derivative as equivalent to merging every set of two
sample points in the traditional strategy. Furthermore, one can

Fig. 9. Contribution of secondary dimensions to neural firing increases with
stimulus variance. We measure relative information gain by computing a
difference between the information accounted for by two dimensions (Info2D)
and that accounted for by the primary dimension alone (Info1D), and then
dividing by Info2D. Such a ratio represents a way to measure the relative
influence of the two dimensions on neural firing. A ratio different from one
indicates a change in the shape of the nonlinear gain function relative to the
stimulus probability distribution, for example, due to imperfect or uneven
rescaling of firing rate gain with respect to relevant stimulus dimensions.
Shown are the low mean/low variance stimulus condition (x-axis) vs. low
mean/high variance condition (y-axis). Across the population of neurons, the
contribution of the second dimension was significantly larger in the high
variance compared with the low-variance condition (P � 0.0156, paired
Wilcoxon test). Points that lie significantly above the line indicate that the
inclusion of a second dimension increased the information more in the high
variance condition than in the low; points below the line indicate more
information from a second dimension in the low-variance condition. Each
symbol is a neuron, black P � 0.05, white P � 0.05, t-test. Neurons exhibiting
a significant change in the shape of the 2D gain function were characterized by
a weaker contribution of the second dimension with a low-variance stimulus
(7/8). The points marked with symbols are the same as in Fig. 8.
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merge every set of three sample points in the traditional
sampling strategy to arrive at a three-dimensional sampling
strategy where the waveform is represented by values of its
function, and both its first and second time differentials, with
each set of measurements now taken at one-third of the Nyquist
rate (Fig. 11C). More generally, and importantly for neural
coding where spikes fire irregularly, time-varying stimuli do
not need to be sampled at regular intervals. Instead, there
simply needs to be two measurements on average within the
period of the maximal signal frequency (Jerri 1977; Shannon
1949).

Although lossless stimulus reconstruction from discrete
samples is possible for both the traditional sampling and for the
higher-order sampling strategies that include sequential time
differentials, these strategies differ in their susceptibility to
noise. If high frequencies provide significant contribution
to noise, then noise values change rapidly, making even nearby
noise values uncorrelated (Fig. 11D, top vs. middle panels).
This, in turn, can corrupt measurements of the time differen-
tials, which involves subtracting one noisy point from another.
This explains why the traditional sampling strategy, where
only signal values are measured, is used most often in situa-
tions with high-frequency noise. The situation is different,
however, when it comes to detecting sounds in a natural
auditory environment. Background vocalizations, environmen-
tal sounds, and neural variability within the nervous system are
all dominated by low frequencies, with a gradual decrease in
the noise power spectrum as a function of frequency f, usually
proportional to �1/f2 (Lewicki 2002; Ruderman and Bialek
1994; Singh and Theunissen 2003; Teich et al. 1997; Voss and
Clarke 1975). In this situation, nearby time points tend to share
the same noise offset, so subtracting them to compute a

derivative may actually increase the quality of the signal
waveform reconstruction (Fig. 11D, bottom panel). Field L
neurons normally operate in natural settings, where signal and
noise sources have a similar distribution of power across
frequencies, and both are dominated by low frequencies.
Therefore, the sensitivity of these neurons to both the average
value of the signal amplitude and its rate of change may serve
to increase the robustness of the neural reconstruction of the
continuous signal. At the same time, such selectivity to mul-
tiple stimulus components could begin to explain the hyper-
sensitivity of auditory cortical neurons to small perturbations
of their acoustic input (Bar-Yosef et al. 2002), as well as the
large effect that the naturalistic background noise can have on
the responses of such neurons (Bar-Yosef and Nelken 2007).

To test these ideas about the benefits of multidimensional
encoding quantitatively, we compared how well the stimulus
waveform could be reconstructed (by calculating the average
mean square error) when we used three different types of
sampling [sampling either the signal values alone at the rate
1/(2W), the signal and first time derivative values at the rate
1/(W), or the signal and first and second time derivative
values], and allowed for the possibility that the sampled mea-
surements were corrupted by noise. We varied the frequency
composition of the noise by varying its correlation time �
(where high-frequency noise has low �, and vice versa), using
a Gaussian distribution C(f) � C0 � exp(�f 2 �2/2). Parameter
� describes the average time over which noise correlations
persist; its product with the maximal signal frequency, W,
characterizes the ratio of noise correlation time to the fastest
period in the signal. When the correlation time � is short, and
the product W � is, therefore, small (Fig. 11D, middle panel),
noise contributions at frequencies larger than W are significant.

Fig. 10. The distribution of spike-time jitter. A: spike-time jitter
was estimated following the method of Aldworth et al. (2005),
whereby estimates of the relevant stimulus dimension (com-
puted as STA) are readjusted by allowing varying delays in the
arrival times of single spikes. The standard deviation of a
Gaussian distribution for jitter in spike time was computed
separately for each cell and stimulus condition. The three
outlier points belong to the same neuron “pho1295wide” under
the three different stimulus conditions. Thus nearly all cells
exhibit a very low degree of spike-time jitter with submillisec-
ond precision in spike timing. In B and C, we illustrate typical
results of MID optimization obtained with (thick gray line) and
without prior dejittering of spike trains binned at 4-ms resolu-
tion. The subspace projection between the two relevant spaces
for this example is 0.99. Neuron “udon2120”.
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In contrast, when � is long and the product W � of order 1 and
larger (Fig. 11D, bottom panel), noise contributions are con-
centrated at frequencies below W, potentially allowing for a
reliable computation of the derivative.

The traditional sampling strategy based on sampling the
signal values alone has an important advantage whereby its
reconstruction error is always equal to the noise variance,
independent of how noise power is distributed across frequen-
cies (Jerri 1977; Shannon 1949). Thus the reconstruction error
in this case is independent of the noise correlation time.
Because the mean square error always increases proportionally
to the noise variance, we report results for this and other
sampling strategies in units of noise standard deviation in Fig.
11E. In these units, the reconstruction error of the traditional
sampling strategy is indicated by a line at y � 1 in Fig. 11E and
will be used as the benchmark for other sampling strategies.

In contrast to the sampling of signal values alone, recon-
struction errors for sampling strategies that rely on measure-
ment of derivatives can depend strongly on the noise correla-
tion time �, just as suggested by the intuition in Fig. 11D (see
APPENDIX A for details of the derivation). When the noise
correlation time � is much shorter than �1/(2W), which is the
minimum time interval between samples taken at the Nyquist
limit for a function with a maximum frequency of W, the
sampling strategies that involve derivative measurements per-
form much more poorly than the traditional sampling (see left
portion of Fig. 11E). This agrees with idea illustrated in Fig.
11D that high-frequency (low �) noise can corrupt the estimate
of time derivatives. However, when the noise correlation time
increases beyond the value of 1/(2W) (i.e., beyond W � � 0.5,
cf. center and right portions of Fig. 11E when noise becomes
lower frequency), the mean square error associated with mea-

Fig. 11. Different sampling strategies and their susceptibility to noise. A: in traditional sampling, function values are measured at an average rate of 2W, where
W is the signal bandwidth. B: when the signal and its time differential are sampled simultaneously, measurements can be done at the reduced rate of W. C: when
the signal and its first and second time differentials are measured together, the sampling rate can be further reduced to 2W/3. All three strategies are equivalent
in the absence of noise. D: illustration of the effects of noise on the computation of derivatives. Top: signal with no noise. Middle: in the presence of
high-frequency noise, nearby time points have very different noise values, making the computation of time-derivatives noisy (W� � 0.1). Bottom: in the presence
of low-frequency noise, nearby time points generally have similar noise values, making the derivative computation more robust (W� � 1.0). E: mean
reconstruction error in a linear model where sample values are corrupted by noise. The results are plotted as a function of noise correlation time �. Blue line,
traditional sampling of signal values; left magenta line, sampling of signal and first time derivatives; right brown line, sampling of signal, first and second time
derivatives.
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suring time derivatives improves dramatically, reaching the
benchmark of one as W � increases further (magenta and brown
lines, Fig. 11E). Importantly for this idea, in many natural
sensory environments, W � is expected to be on the order of 1.
This occurs because, in such settings, not only are stimuli
dominated by lower frequencies, but the main sources of
“noise” are also from other natural stimuli. When signals and
noise are of the same origin, correlations between noise values
persist over similar time scales as those between the signal
values, making W � close to 1. Therefore, for naturalistic
situations, multidimensional sampling strategies can be just as
viable as the traditional sampling strategy. We note that the
relative comparisons of the mean square error remain valid, even
if the reconstruction takes steps to optimally suppress noise in
ways that extend Wiener filtering arguments for continuous sig-
nals to the case of discrete samples (see APPENDIX B).

An important advantage of combined sampling of function
values and their time differentials is that samples can now be
taken at reduced frequencies (Fig. 11). The duration of the
neural filter T or of its spike waveform, which correlates
positively with T (Nagel and Doupe 2008), sets the limit on the
sampling rate �t �1/T that can be sustained by the neuron.
Therefore, a neuron with a broad relevant dimension may not
be able to sustain the same sampling rate as a neuron with a
narrower relevant stimulus dimension. To encode the same
fast-changing stimulus, the neuron with a broad relevant stim-
ulus dimension can instead rely on a multidimensional sam-
pling strategy that is based on combinations of the local
time-average of the signal and its time derivatives (Fig. 11, B
and C). Although higher-order derivatives are progressively
more susceptible to noise, such strategies become acceptable
(Fig. 11E) when noise is strongly correlated in time, with a
strong contribution from low temporal frequencies, as in nat-
ural stimuli.

How would these effects play out in the context of stimulus
encoding with a population of neurons? Here, in addition to
lowering the required sampling rate, multidimensional encod-
ing may also reduce the overall effective noise level. This is
because the additive noise that we consider has two compo-
nents. The first component arises because the stimulus values
are not known precisely. The second component arises because
the sampling times are not known precisely. It has been shown
previously (Jerri 1977) that the second component can be
mapped onto the first one, i.e., one can consider the reconstruc-
tion where the sampling times are known exactly, but with
increased uncertainty in the stimulus values. This is the simple
calculation that we did. However, in a model with populations
of neurons, each of which is sampling the stimulus at many
times, the noise in sampling time, or jitter, becomes more
increasingly important. In such a model, the noise standard
deviation relative to which the reconstruction error is measured
may be further reduced by multidimensional encoding, because
the reduced number of samples in such sampling reduces the
second component of the noise. On the other hand, more
neurons might be needed to encode the many 2D stimulus
combinations of the mean and its time derivatives, compared
with encoding of the 1D mean stimulus value. We, therefore,
envision that the optimal dimensionality of stimulus encoding
might be determined by the trade-off between the number of
neuronal responses necessary to reconstruct a multidimen-
sional stimulus and the decrease in sampling and accompany-

ing jitter noise possible with multidimensional encoding. In
light of our experimental observation of 2D encoding, how-
ever, the goal of the simple analysis here of the mean square
error is to provide some intuition about possible benefits of
two- and higher-dimensional encoding strategies.

DISCUSSION

Adaptation lies at the heart of sensory signaling. Although a
great deal has been learned about how adaptation affects
primary feature selectivity in sensory neurons, we are only
beginning to determine how it reshapes complementary stim-
ulus features that, for example, increase selectivity and con-
tribute to sparseness of neural responses.

In this paper, we demonstrated that the firing rate of single
neurons in the field L region of the auditory forebrain was
affected by at least two features of the sound log-amplitude
waveforms. A strikingly systematic relationship between the
relevant dimensions was observed, in which one of them
approximated the time differential of the other dimension,
although either dimension could play the dominant role. This
systematic relationship was preserved even when both dimen-
sions underwent marked changes in their shape following a
change in the stimulus mean. Unlike adaptation to stimulus
mean, adaptation to stimulus variance did not change the
relevant dimensions, but altered their relative contributions to
neural firing. Finally, the systematic relationship observed
between the primary and secondary dimensions can be seen as
a strategy for minimizing the sampling rate while preserving
the accuracy of reconstruction of stimuli correlated over long
times (like natural sounds).

Auditory neurons have been known to adjust their filtering
properties in response to changes in mean sound amplitude and
auditory contrast (Frisina et al. 1990; Krishna and Semple
2000; Kvale and Schreiner 2004; Lesica and Grothe 2008a;
Nagel and Doupe 2006; Nagel and Doupe 2008; Rees and
Moller 1987) or with increasing ambient noise (Lesica and
Grothe 2008b) or higher moments of the stimulus distribution,
such as kurtosis (Kvale and Schreiner 2004). At low sound
volumes, neurons predominantly show averaging or integrating
characteristics with respect to both sinusoidally (Frisina et al.
1990; Krishna and Semple 2000; Rees and Moller 1987) and
randomly amplitude-modulated sounds (Lesica and Grothe
2008a; Nagel and Doupe 2006; Nagel and Doupe 2008). This
allows them to detect faint signals embedded in noise at the
expense of fine temporal resolution (Lesica and Grothe 2008b).
With increasing sound volume, neurons increase their “differ-
entiating” characteristics, enhancing their temporal resolution
for important sound features such as onsets and offsets. Such
intensity-dependent changes in neural filtering occur both in
single neurons when the mean of injected currents is increased
(Mainen and Sejnowski 1995) and in the visual system, espe-
cially the retina (Atick and Redlich 1992; Baccus and Meister
2002; Chander and Chichilnisky 2001; Enroth-Cugell and
Lennie 1975; Kuffler et al. 1957; Srinivasan et al. 1982), where
neurons lose their differentiating surrounds in dim light (low
signal to noise). Our results demonstrate that, even at the soft
sound pressure levels (30 dB), where integrating characteristics
dominate in most neurons, both the integrating and the differ-
entiating components already make nonlinear contributions to
neural firing of single neurons, regardless of whether these
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neurons are primarily driven by the integrating or differentiat-
ing components. At high stimulus mean, the two relevant
quantities switch to the first and second time derivatives of
stimuli. These two findings could not have been predicted
based on previous analyses of single relevant dimensions
(Nagel and Doupe 2006).

A sensitivity to multiple stimulus components has been
observed in several sensory systems, including the retina
(Fairhall et al. 2006) and olfactory sensory neurons (Kim et al.
2011), the primary visual (Rust et al. 2005; Touryan et al.
2002), auditory (Atencio et al. 2008; Zhou and Wang 2010),
and somatosensory (Maravall et al. 2007) cortices. In the
auditory system, multidimensional description of neural coding
may provide a complementary way to account for dynamic
effects in studies of neural sound detection in the quiet (Heil et
al. 2008). In that work, much of the variance in the first-spike
latency can be explained by a 1D model, where a fixed
threshold is applied to the low-pass filtered sound amplitude
(Heil and Neubauer 2001; 2003). At the same time, full
description of the data from auditory nerve fibers and auditory
cortical neurons also requires the introduction of time depen-
dence, where the threshold value increases sublinearly with
latency (Heil and Neubauer 2001; 2003). The 2D model with a
fixed threshold that is a function of both the low-pass filtered
amplitude and its first time derivative may provide another way
of capturing this phenomenon. This observation raises the
possibility that the selectivity for multiple features that we
describe could first arise early in the ascending auditory sys-
tem, but be augmented by processing at many stages. On the
other hand, recent data demonstrate that the importance of the
second dimension increases greatly between the input and
higher layers of cat primary auditory cortex, suggesting that
multiple-feature selectivity is a property of higher auditory
processing stages (Atencio et al. 2009).

In the context of auditory and other sensory data, the finding
that neural responses in the auditory forebrain of songbirds are
affected by multiple stimulus components provides further
evidence for the common principles of sensory encoding across
multiple species and sensory modalities. Furthermore, the in-
formation gain from adding the second dimension relative to
the information of the 1D model was very similar in our data
set (median 25%, mean 36%) to values previously reported in
the primary mammalian auditory cortex (median 25%) (Aten-
cio et al. 2008) and in the retina (Fairhall et al. 2006). In the
case of the retina, the relative information gain could be more
than 100% for some cells, and this was also true in our data set,
which contained five such cases. Thus, the 2D encoding we
observe in the field L is just as significant as in other sensory
systems. Furthermore, even smaller increases, on the order of
10% in predictive power, are considered “noteworthy” (Gill et
al. 2008, see also Prenger et al. 2004). Therefore, our analysis
of how two filters per neuron are affected by adaptation to the
stimulus mean and variance should be of relevance to a number
of other sensory systems.

We found that, in field L, the relevant stimulus dimensions
had specific profiles, representing consecutive time differen-
tials of the stimulus waveform. In the case of soft sounds, this
feature was the log-amplitude itself, whereas, with loud
sounds, the feature of interest was the first time differential of
the log-amplitude. Similar types of derivative-based encoding
have also been observed in dynamic models of single-neuron

spiking (Hong et al. 2007) and in slices from the brain stem
nucleus magnocellularis (Slee et al. 2005). Combined with our
theoretical analysis of the mean square reconstruction error, the
observation of derivative-based encoding again speaks to the
common problems and solutions employed in different neural
systems. Moreover, because single-neuron dynamics can only
explain derivatives as secondary, not as primary, dimensions,
an additional finding here is that time derivatives may play
either the primary or secondary role. This suggests that rele-
vant dimensions in field L neurons must also be shaped by
network mechanisms, as well as neuron dynamics.

In sensory coding, sensitivity to the velocity and accelera-
tion in whisker deflections has been observed in the somato-
sensory cortex (Maravall et al. 2007). That study examined
adaptation to stimulus variance, but not to stimulus mean, and
did not report changes in the stimulus dimensions. Our finding
that relevant dimensions in the auditory forebrain also do not
change following adaptation to variance provides a third line of
evidence for the similarities of adapting strategies across the
sensory systems. At the same time, our results on filter changes
in response to increases in stimulus mean further suggest that,
in the somatosensory cortex, adaptation to stimulus mean
might also trigger changes in the multiple relevant dimensions.

Analysis of neural responses to stimuli of different variance
revealed the possibility of diverse and, to our knowledge, novel
effects of adaptation on the shape of multidimensional nonlin-
ear gain functions. Previously, gain control mechanisms have
been primarily studied with respect to the primary stimulus
dimensions. A recent 2D study in the somatosensory cortex
found that adaptation to stimulus variance did not change the
first and second stimulus dimensions, but rescaled the firing
rate gain with respect to the dimensions by a common factor
proportional to stimulus variance (Maravall et al. 2007). Note
that, in that system, the shapes of nonlinear gain functions were
similar across both neurons and stimulus conditions, with firing
rate increasing as a square of stimulus components along the
relevant dimensions. In contrast, in field L, we observed a great
variety of nonlinear gain functions, even for a given stimulus
condition. Moreover, following a switch to a higher stimulus
variance, the contribution of the second component increased
on average across the population, an effect that would not be
expected for a common rescaling of firing rate gain along both
the primary and secondary stimulus dimensions. For neurons
with an especially strong increase in the contribution of the
second component with variance, the shape of the 2D firing
rate function was changed altogether. Thus, even though
changes in stimulus variance do not affect the shape of relevant
dimensions, a number of adaptive phenomena are possible that
take advantage of the multidimensional character of neural
feature selectivity.

With respect to the mechanism through which the 2D feature
selectivity might arise, one possibility is that sensitivity to both
a feature and its first time derivative arises as a result of
threshold crossing (Agüera y Arcas and Fairhall 2003; Agüera
y Arcas et al. 2003; Deweese 1996; Fairhall et al. 2006; Hong
et al. 2007; Slee et al. 2005). However, in these situations, the
feature itself is always dominant. In contrast, we found that
either the average or the derivative of the feature could play the
dominant role in neural coding. In addition, we found that
neurons perform diverse computations within this 2D input
space that are usually not sensitive to the particular sign of the
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derivative components (Fig. 8, A, a2, and B, b2), as would be
the case if the selectivity to the derivative feature arose as a
result of threshold crossing. Another mechanism that could
give rise to a sensitivity of neural responses to time derivatives
is jitter in spike timing (Aldworth et al. 2005; Dimitrov and
Gedeon 2006; Dimitrov et al. 2009; Gollisch 2006). However,
spike timing jitter in the responses of these neurons was quite
small (� 1 msec for nearly all cells; see red underlined event
in Fig. 1b for an example, as well as Fig. 10 for population
data), just as in mammalian auditory cortex (DeWeese et al.
2003) and other sensory systems (Bair 1999; Bialek et al. 1991;
Bryant and Segundo 1976; Mainen and Sejnowski 1995; Pe-
tersen 2007; Tiesinga et al. 2008). The fact that the precision of
spike timing is much smaller than the temporal scale of the
relevant dimensions rules out the possibility that the sensitivity
to a time derivative is due to jitter in spike times. Finally,
neither the threshold crossing mechanism nor time jitter effects
are likely to explain a change in the filter shapes with increas-
ing mean sound amplitude.

Our theoretical analysis demonstrates that multidimensional
encoding based on sequences of time derivatives can be just as
robust to distortions from noise in natural environments as
encoding based on just one primary stimulus feature per
neuron. Multidimensional encoding can be realized either at
the level of individual neurons, as we observed here for single
field L neurons, or at the level of neural populations, where
each neuron would be sensitive to just one stimulus feature that
would take different shapes for different neurons. However,
one of the key advantages of multidimensional sampling is that
it reduces the necessary sampling rate. This reduction can
allow even neurons with broad spikes and/or filters to partici-
pate in encoding of fast-changing stimuli by measuring both
the average and the rate of change of the stimulus. Such
sampling rate limitations are less likely to be relevant for
encoding in which stimulus features are distributed across a
population of different neurons. Our result suggests, however,
that multidimensional encoding might be a necessary feature of
stimulus encoding by single neurons and could be more pro-
nounced among pyramidal neurons compared with fast-spiking
interneurons with narrower spikes.

The theoretical arguments here also raise the possibility that
the dimensionality of neural representations can be affected by
adaptation to the statistics of the noise, even when the mean
and variance of the sound log-amplitude are held constant. The
prediction is that the contribution of the secondary stimulus
dimensions would increase with increasing contributions of
low temporal frequencies in either the stimulus or noise dis-
tributions. Thus, as neurons are probed with naturalistic noise
of increasing correlation time, the second dimension might
play an increasingly larger role relative to the first. Recent
work (Garcia-Lazaro et al. 2006) indirectly supports this hy-
pothesis. There, the authors demonstrated that the responses of
neurons in the primary auditory cortex are more reproducible
when probed with stimuli with �f�2 power spectra, compared
with sounds with faster or slower decreases of stimulus power
with frequency. This suggests that the sampling strategy neu-
rons use is optimized for naturalistic, as opposed to other kinds
of signals.

In summary, adaptation to mean sound amplitude affects
both the primary and secondary stimulus dimensions. For both
soft and loud sounds, the relevant dimensions represent con-

secutive time differentials, although the order of the differen-
tials changes from zero (integration) and first, in the case of
soft sounds, to first and second, in the case of loud sounds.
These data suggest that the selectivity to combinations of time
differentials that is observed in a number of sensory systems,
from single neuron dynamics to somatosensory cortex, and
now in auditory encoding, is a consequence of having to
encode continuous natural stimuli using discrete spikes.

APPENDIX A: DERIVATION OF RECONSTRUCTION ERRORS
FOR DIFFERENT SAMPLING STRATEGIES

In this section, we provide the analytic expressions for the depen-
dence of the reconstruction error on the noise correlation function, for
different sampling strategies. In all cases, we will assume that a
time-varying signal s(t) is band-limited to frequencies | f | � W Hz. The
process of reconstruction of the continuous signal from discrete
samples is based on convolving the sequence of these samples with
certain functions, which we refer to as convolution kernels, to esti-
mate the value of the function in between the sampling points. The
explicit solutions for these kernels that would allow us to perfectly
reconstruct the signal in the absence of noise were obtained by
Shannon (1949) for the traditional 1D sampling strategy, and by Jerri
(1977) for multidimensional sampling strategies. The corresponding
expressions in the time and frequency domains are as follows (Brace-
well 1986).

For the 1D sampling strategy, there is just one kernel u(1D)(t) to be
convolved with a sequence of function values taken at intervals of
�t � 1/(2W):

u(1D)(t) �
sin �t ⁄ 	t

�t ⁄ 	t
, U(1D)(f) � 1 ⁄ (2W) (A1)

where the two expressions describe this kernel in the time and Fourier
domains, respectively.

For the 2D sampling strategy where the values of the function and
its first time derivative are measured at intervals of �t � 1/W, there
are two convolution kernels. The kernel to be convolved with the
sequence of function values is given by:

v0
(2D)(t) � � sin �t ⁄ 	t

�t ⁄ 	t �2

, V0
(2D)(f) �

W � � f�
W2 (A2)

in the time and Fourier domains, respectively. The corresponding
expressions for the second kernel to be convolved with the stream of
derivative measurements can be written as:

V1
(2D)(f) �

� f�
2�iW2f

, v1
(2D)(t) � tv0(t) (A3)

Both V0(f) � V1(f) � 0 for frequencies | f | � W.
Finally, in the case of the 3D sampling strategy where the values of

the function, together with its first two time derivatives are recorded
at intervals of �t � 3/(2W), there are three different convolution
kernels. The three kernels are to be convolved with three different
streams of samples: w0

(3D)(t) with function values, w1
(3D)(t) with values

of the first derivative, and w2
(3D)(t) with values of the second deriva-

tive. The corresponding expressions in the time domain are:

w0
(3D)(t) � � sin �t ⁄ 	t)

�t ⁄ 	t �3�1 

�2t2

2	t2� ,

w1
(3D)(t) � t� sin �t ⁄ 	t

�t ⁄ 	t �3

, w2
(3D)(t) �

t2

2 � sin �t ⁄ 	t

�t ⁄ 	t �3 (A4)

Each of the three reconstruction strategies, either 1D described by Eq.
A1, 2D described by Eqs. A2 and A3, or 3D described by Eq. A4
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would yield the zero reconstruction error between the incoming signal
s(t) and the reconstructed waveform ŝ(t) in the absence of noise (i.e.,
they are unbiased reconstruction strategies). In the presence of noise,
the mean reconstruction error ��s2�t�	 is proportional to variance C0

and may also depend on the noise correlation function C(t � t=) �
�n(t)n(t=)�.

In the case of the traditional 1D sampling strategies, Shannon
(1949) showed that the mean reconstruction error depends only on the
noise variance and does not depend on other noise statistics, including
the time dependence of the noise correlation function:

��s2(t)	 � C0 (A5)

This happens because the overlap integral between the convolution
kernels Eq. A1 centered at different sampling points is zero. This is no
longer true for higher dimensional sampling strategies. For the 2D
sampling of function values and their first time derivatives, we find
that the mean reconstruction error is given by:

��s2(t)	(2D) �
2

3
C0 �

	t2

2�2 C̈(0) 

2

�2 

m�1

� C(m	t)

m2

�
2	t

�2 

m�1

� Ċ(m	t)

m

(A6)

where Ċ and C̈ are the first and second time derivatives, respectively
of the noise correlation function C(t). For the 3D sampling of function
values and their first and second time derivatives, we find that the
mean reconstruction error is:

��s2(t)	(3D) �
143

160
C(0) 


3	t2

16�2 C̈(0) 

3	t4

32�4C(4)(0)

�
3

4 

k�1

� (�1)k

�2k2 C(k	t)(1 

6

�2k2 )



3

2 

k�1

� (�1)k

�3k3

	t

�
Ċ(k	t)�3 


�2

2
k2� �

9

4

	t2

�2 

k�1

�

C̈(k	t)



3	t3

�3 

k�1

� (�1)k

4�k
C(3)(k	t)

(A7)

where C(3) and C(4) are the third and fourth time derivatives, respec-
tively of the noise correlation function.

The above expressions (Eqs. A2–A7) were obtained in the general
case, without specifying the function C(t � t=). In Fig. 11E, we
analyze the dependence of the mean square error as a function of noise
correlation time � for a Gaussian noise model with C(t � t=) � C0

exp[�(t � t=)2/2�2]. In the frequency domain, this function corre-
sponds to the noise power spectrum C(f) � C0� exp(�f 2�2/2).
Because the mean reconstruction error ��s2�t�	 is always proportional
to variance C0, we plot results relative to this value. With this
normalization, the mean square error for 1D sampling (Eq. A5)
becomes a straight line at the value of 1, cf. blue line. In comparison,
the mean square error for the 2D sampling strategy (Eq. A6) diverges
at small noise correlation times, but then approaches the unity line.
Thus, with increasing noise correlation time, the 2D sampling strategy
becomes indistinguishable from the 1D sampling strategy. This be-
havior is also observed for the 3D sampling strategy (brown line
computed according to Eq. A7). However, the mean reconstruction
error for the 3D sampling strategy is always greater than that of the 2D
sampling strategy and thus requires slightly longer noise correlation
times to reach the unity line.

APPENDIX B: OPTIMAL WIENER RECONSTRUCTION WITH
DISCRETE SAMPLING

The above derivations compared the mean reconstruction error
using convolution kernels that yield zero reconstruction error in the

absence of noise. However, if the noise correlation structure is known,
then it might be beneficial to use somewhat different kernels that
might not give zero reconstruction error in the absence of noise, but
would minimize the error in the presence of noise with this particular
structure. This idea was explored by Wiener (1964) for encoding
continuous signals (without taking effects due to sampling). Here, we
show that the optimal convolution kernels for different sampling
strategies represent a product of Wiener kernels that are designed to
optimally suppress noise for continuous signals and the Shannon
sampling kernels that interpolate signal values between the sampling
points. In other words, the optimal reconstruction of the signal
waveform can be thought of as a two-stage process: prefiltering of
signals according to Wiener, followed by interpolation according to
Shannon equations. Therefore, the relative comparisons of the mean
reconstruction error considered above, cf. Eqs. A5–A7, remain valid,
even if the reconstruction includes the optimal suppression of noise
that is matched to its structure.

We begin by reviewing the Wiener arguments for how to best filter
the measured signal c(t) � s(t) � n(t) that is a mixture of both the
“true” signal s(t) and noise n(t). One searches for such a filter that
would minimize the mean square error between the reconstructed and
true signal. The derivation is easiest to carry out in the Fourier
domain, where the mean square error between the true signal power
spectrum S(f) and its reconstruction Ŝ(f) is given by

� df�Ŝ(f) � S(f)�2
(B1)

where the Fourier transform of the reconstructed signal is Ŝ(f) �
R(f)[S(f) � N(f)], where N(f) is the Fourier transform of the noise, and
R(f) is the Fourier transform of the optimal filter. The smallest error is
achieved when

RW(f) �
��S(f)�2	

��S(f)�2	 
 ��N(f)�2	
(B2)

where ��S�f��2	 is the power spectrum of the signal, and ��N�f��2	 is the
power spectrum of the noise. One notices that, in the case of auditory
signal processing in a natural environment where the average power
spectrum of the noise and signal are similar to each other across
frequencies, the Wiener filter reduces to an almost identity transfor-
mation, and thus is not expected to reduce the reconstruction error. In
addition, in what follows, we show that Wiener filtering can be
linearly combined, in an identical manner, with reconstructions for
different sampling strategies.

In the traditional sampling strategy, we have to find such a convo-
lution filter u(t) that, when applied to the stream of function values
(corrupted by noise) taken at intervals of �t � 1/(2W), would yield the
reconstructed signal ŝ(t) with the smallest mean square distance from
the true signal s(t). The reconstructed signal is given by

ŝ(t) � 

k���

�

[s(k	t) 
 n(k	t)]u(t � k	t) (B3)

In the Fourier representation, this convolution can be written as
Ŝ(f) � U(f)2W[S(f) � N(f)], where we took into account that signals
have nonzero power only for | f | � W. In the absence of noise, the
Fourier transforms of the reconstructed signal Ŝ(f) and the true signal
S(f) would match if U(f) � 1/(2W), which is another way to derive the
Shannon result we quoted above in Eq. A5 (Shannon 1949). In the
presence of noise, the mean square error is given by

��df�Ŝ(f) � S(f)�2	 � ��df�U� f�2W�S� f� 
 N� f��
� S� f��2	 (B4)

which is minimized when the Fourier transform of the convolution
kernel is
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U(f) �
1

2W
RW(f) (B5)

Here, we took into account the expression for the optimal Wiener
kernel in the continuous case (Eq. B2). Thus the optimal reconstruc-
tion from discrete samples of the function values can be achieved by
two sequentially applied filtering operations (in any order): one to
optimally filter the continuous signal (either before sampling or after
the reconstruction) according to Wiener, and second to interpolate
between the sampling points according to Shannon formula, Eq. A5.

The same turns out to be true in the case of other, higher dimen-
sional sampling strategies. For example, minimizing the mean square
error between the Fourier transform of the “true” signal S(f) and its
reconstruction Ŝ(f) in the 2D sampling strategies, we find that the
smallest reconstruction error is obtained when the stream of function
values is convolved with the filter

V0(f) �
W � � f�

W2 RW(f) (B6)

whereas the stream of first-order derivatives is convolved with

V1(f) �
� f�

2�iW2f
RW(f) (B7)

In both Eq. B6 and Eq. B7, RW(f) is the same Wiener filter as in Eq.
B2 and Eq. B5. Thus we again see that the optimal reconstruction of
the underlying continuous signal can be done as a combination of two
operations: 1) interpolation between samples with the convolution
kernel appropriate for a given sampling strategy (compare Eqs. B6, B7
with Eqs. A2, A3 that do not specifically take advantage of noise
structure); and 2) optimal filtering with the Wiener kernel RW(f) from
Eq. B2.

In summary, the optimal sampling and reconstruction of the con-
tinuous signal based on discrete sample points can be done in two
steps. First, the sampled values need to be convolved with kernels that
give zero reconstruction error in the absence of noise. These kernels
differ, depending on the sampling strategy, for example, when func-
tion values are measured at equally spaced intervals, or when a pair of
function values are measured at nearby points in time, yielding
measurements of the function values and their time derivatives. The
resultant continuous waveform can then be further filtered according
to the Wiener optimal filtering procedure. The second step is the same,
regardless of the sampling strategy, and will have the same effect on
the accuracy of the signal representation. Thus the relative compari-
sons between different reconstruction strategies remain valid, even if
the reconstruction includes optimal noise suppression following Wie-
ner arguments.
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