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1.Statement of the problem.We investigate the asymptotic behaviour (when t—) of
solutions of boundary-value problems for equation

d.u(t,x) =—-du(t,x). )
This is a linearized Korteweg-de-Vries equation. We study solutions of the equation (1)
in the domain E?_ = {(t,x):t >0,x>0 } natural from the physical point of view.

Equation (1) is well-posed in the sense of Petrovskij and belongs to the class of g-
hyperbolic equations (q=3), which were defined by Gindikin S.G. in [1]. The theory of
mixed (boundary) problems for such equation is stated in important works of L.P.Valevich
and S.G.Gindikin [2,3]. Here we consider boundary-value problems for equation (1) of the
following type

u(t,x) |, =0,x eR}, = {x,x>0} @
B(ax )U(t, X) = g(t),t € EL = {t:t} 0} (3)

x=+0

where B(A) = Db, A" - polynomial with real coefficients.
k=0

We find condition on the polinomial B(X), which guarantees stabilization of bounded
solutions u(t,x) of the problem (1)-(3), constructed by arbitrary stabilizing boundary
functions g(t).

2 Dirichlet problem. In our further analysis the propreties of the Poisson’s kernel of the
problem (1)-(3) play an essential role, particularly, their behaviour at large time intervals.
From our point of view these properties are very interesting for themselves. First, let us
consider the Dirichlet problem (B(A)=1). As a result of this consideration, information
important for all further arguments will be obtained.

Theorem]. The Poisson kernel Go(t,x) of the Dirichlet problem for equation (1) is defined
=

G (b st = At~ (4)
where Ai(z) -is the Airy function ([3],10.4.32).
Proof. Here we apply the method similar to that of surface potentials. According to this
method, at first the fundamental solution Z(t,x) of the Cauchy problem for equation (1)

must be find by means of usual Fourier-transform with respect to space coordinate x, we
receive,
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Using formula (10.4.32 [3]), it is possible to express (5) in terms of the Airy function:
1°% ; :
Z(t,x) = —zﬂjexp{mx-b 1c’t}dc ()
T o

Z( tx)=t P Ait). | - ©

Let us recall, that for |arg z| <m and | z| —>o the following asymptotic series presents the
Airy function (10.4.59,[3]):

= 2 312
Ai(z) » }2—1(”22““ exp {—Li}kz (=Dre, e E= 37 7

Solution of the Dirichlet problem for equation (1), which saticfies the zeroth initial
conditions, is searched for in the form of binary layer potential:

u,(t,x) = jaizu -1,x)y(t)dt, | )

where density-function y(t) need to be defined. Using the differential equation for the
Airy function w''-zw=0 (10.4.1,[3]) one can present ui(t,x) as:

ditx)= _[x(t ~ )" Al(x(t — 1))y (r)dr = T?}A}'(z)w(t —(x/2)*)dz. (9)

]

Let x—0 in the equality (9). Then one can receive, that:

u(t,0) = w(t)T 3Ai(z)dz.

Applying the asymptotic series (10.4.82[3]) for the Airy function, from which follows,
that

T 1

IAl(ﬁ)d[} =3 That means, that y(t)=g(t).

Q

Then we ultimately receive solution of the Dirichlet problem represented by formula:

u(t,x)zIGu(t,x)g(tw 1)dT, (10)
o

where Go(t,x)=xt** Ai(xt""?) the Poisson kernel for the Dirichlet problem.

3.General boundary problem. Now let us pass to the investigation of the boundary-
value problems (1)-(3) in the most general case. Applying the Laplace-transform with
respect to time coordinate t to equation (1), one can receive:

d*i

3

5 d s 5(0)
+pl=0,B(=)8(p.x) |, = &(P) (P, X) > 0,x > o, (5
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where functions g(p) and U(p,x) - Laplace-images of functions g(t) and u(t,x)
correspondingly. These functions are considered for x>0 and Rep>0. Characteric
equation, corresponding to (10) looks like

A +p=0,p=|plexp{io}, | (12)
and has the following solutions:
x,(p) =lpl” expli((@ + @)/ 3+ 20(j- 1)/ 3}, j=123. 13

For {p:Rep>0} these solutions are situated at the appropriate sectors,presented at Fig. 1.
Qaly one root Ax(p) among these three ones, @

has negative real part, and therefore it defines

the solutions of problem (11)-(12) by formula:
a(p,x) = E(PB(, (p) " exp{R,(p)x}.

Thus, we have received the representation for 3
bounded solutions u(t,x) of the problem (1)-(3) as

u(t,x) = j'G(t - 1,Xx)g(1)dr, Fig.1. (14)
where
G(t,x)=(2x1)~ _rexp{pt + ll(p)x}(B(lz(p)))"dp - (15)

y-re

the Poisson kernel of the problem (1)-(3). and y - suitable, generally speaking, large
enough positive constant.
The analysis of formula (15) leads to the statement of the following main condition.

Condition o All zeros of polynomial B(X) are situated at the sector
A-{A eCargh e(-5n/6,+5n/ 6}.

Thus condition is equivalent to the requirement that all zeros of the algebraic function
F(p)y=B(A2(p)) are situated at the half-plane Rep<0 of the complex p-plane.

4.Poisson kernels of general boundary -value problems. Let us pass to the
investigation of Poisson kernels G(t,x) of boundary-value problems (1)-@).

Theorem 2. Let the condition & be held. Then
1)for t € (0,1],x > 0, the following estimation is valid

(G (t,x)|< thxp‘{—c(xt"")”“}; (154)
2)the following representation takes place:
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G(t,x) =G, (t,x)B(0)" + G,(t,x), (16)
where fort > 1 for the function Gy(t,x) the following estimation is valid:

G, (t,%)| s Ct ™ exp{(—clx|t™)*"*} (17)
3)integral T |G(t,x)|dt is uniformly bounded with respect to x.

Proof, Let us concisely set forth the proof of the statement 2). Statement 1) is prooved by
the help of analogous concept then, but it is essentially more simple. Statement 3)
immediately follows from 1) and 2).

Let us use the identity:
B(A,(p))™ = B(0)™ +(B(0) - B(A, (p))B(OBM, ()™

By means of it, Poisson kernel G{t,x) can be written in the form of (16), where

‘f‘lﬁ

G, (t,x)=-(2mi)™" [exp{pt+A (p)x}Zb (A, ()" (B(O)B(A,(p))) " dp,

¥-im
where vy - arbitrary positive number. Sebsequently introducing new integral variables
q=pt,4d=%""q,&=xt™"" % > 1, and using systematically the Cauchy theorem from
the theory of analytical functions, we receive equality

_ilfz ¥ +im R e 7 b k (Q)v(ﬁjut_m)v A
G, (t,x)= - +;L1 32 o da. 18
= R G N o rre e Y

In the last integral let us pass from integration along straight line, parallel to imaginary
axis (y—ioo, y+ioo) to integration along two rays that comes from the point y+i0 and makes
with imaginary axis angle @o under Im§ > 0 and -, under Im < 0, @, -rather small

positive number. Such transition is possible because of the analyticity of integrand

function due to the condition a, which is guaranteed in the region q 4
Q= {q.q =+ 1vexp{lls:gnvcp},v e(~0,0),0<¢p < (po} . "\Ja
This region is contained between the straight line Req =7 and rays
J = {q:q =y +1vexp(isignve, ),v e(woo,oo)} (Fig.2) Rcé
/ Q)
JJ’

Fig.2.

16 ISSN 0236-0497. Nonlinear boundary value problems. 1997, Issue 7.



In order to estimate Gi(t,x), which is defined by integral with J,, it is necessary to carry out
d=y —|vlsing, +ivcosp,,§ €T,

the following calculations:|q|" =v* + v? = 2yvsing, = (y* + v*)(1 - sing,), (19))
" <y +v,

Qfy +3VD° <2°max(yfy 3M)° <64(v +v7),

VIl > 1= sing,) ™ Gy + 3D,
= lfllexp{i\% ; i= (n/2)+q,.

Rel, (§) = —3/[d|cosy, < —glz(l —sing,)" cos(—g- + %")(W+ M) =

=—8,(3\ﬁ+3\ﬁ;),61>0. |

lexp{(@ + 2.@)% Y| s expy - vsing, - 8,y + ")z} =

= exp{[(y - 8,v"") — Msing, - 8 v * 1k},

where -8,=y-81y"” can be made negative thanks to appropriate choice of a rather small Y.
Condition o results in the existence of positive constant §, such; that

[BO)B(A, (F"t™)[23,. i (1)

Equality (18), inequality (1913) result in the following:

G, (t,x)| <

<C, > I lexp((§ + A, (@)% >|:>:b (*, (q) (BB, (q) ) "da

50283 exp{ -3 xm}_[exp{( [v[sing, — 8 Mm X2 }Z(y +V )""” v <
A 3/24r/2

< C,—5—exp{-8,8"" } < C,(e)t ™ exp{~(5, g)ﬁ”}:

=C, (s)t‘“ exp{—(8, - &)(xt™"*)"* }.(20)
Thus, we have prooved property 2) for the Poisson kernel G(t,x).

5.Stabilization. Now we pass to the proof of the theorem on stabilization.

Definition. Continuous along [0,%0) function g(t) is called stabilizing, if there exists finite limit
go of the function g(t) under t—>o0.



Theorem 3 Let the condition o be fulfilled. Then solutions u(t,x) of the problem (1)-(3),

being represented by the Poisson integral (14) and being constructed by any stabilizing

boundary function g(t), is stabilizing uniformly in any segment [0,A] to the function
u,(x) =g, [, G(t,x)dt.

Proof Let us define function v(t,x)=u(t,x)-us(x). Let us represent v (t,x) as the following:

v(t,x) = j'G(t - 1,x)g(t)dr - TG(t - 1,X)g,dr = _i'G(t - 1,x)[g(t) — g, 1dt —-

~[G(t-t,0g,dr=1,(t,x) = I,(t,%). @

-]

Let us consider the following function: :
T t
J,(t,%) = [ G(t - 7, x)(g(r) - g,)d + [ G(t - 1,%)(g(x) — g, )dr. @)

As g(t)—go under t—o, then for any positive ¢ there exists such constant T(g), that for
V1> T(e):|a(t) - g°| < &. Let us consider, that t> T(e)+1.

Then under T=T(g):
JG(t-1,%)(g(1) - g,)dr

T(e)
T(e)

JG(t=1,%)(g(x) - g,)dv

M=sup | g(t) |

From the representation (16), condition o, evaluations Ai(xt™?) and (17) the
estimation follows (undert > 1, x < A):

<e [ |G(t-1,x)dr < 8T|G(‘r,x)|dt <Ce (23)
T{e) ]
T(e) t
S2M [ [G(t - 7,xjdr=2M [|G(,x)|dt (23)

t=T(e)

IG(t,x)| < C(1+|x)t™* < C(1 + A)t™". (233)
Expressions (23,),(23;) result in:

T6(t = x)(e(x) - g,)de <6MC(1 + A)[(t ~1(e))5 - ﬁ] @0
T?:r estimate Ja(t,x) let us use evaluation (23;):

7, (t,x)| = |gD I G(, x)dtl <lg,JCc+ A)I T™dv =3Cg,|(1+ A)t™" . (235)

The statement of the theorem 3 follows from (23,),(234),(23 5) .
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