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I.Statement ofthe problem.We investigatethe asymptoticbehaviour (when t~oo) of
solutions of boundary-value problems for equation

o.u(t,x) = -o~u(t,x). (1)

This is a linearized Korteweg-de-Vries equation. We study solutions of the equation (I)

in the domain E~+ = {(t,x):t > O,x > 0 } natural fTomthe physical point of view.

Equation (1) is well-posed in the sense ofPetrovskij and belongs to the class of q-
hyperbolic equations (q=3), which were definedby GindikinS.G. in [I]. The theory of
mixed(boundary) problems for such equationis stated in important works ofL.P.Valevich
and S.G.Gindikin (2,3]. Here we consider boundary-valueproblems for equation (I) of the
followingtype

u(t,x) L.o=O,xER~={x,x>O}

B(oJu(t,xt=+o = g(t),t EE~ = {tt> O}

(2)

(3)
r

hereB(t..) = L bkAk -polynomial with real coefficients.
k=O

We find condition on the poiinomial B(,,-), which guarantees stabilization of bounded
solutions u(t,x) of the problem (1)-(3), constructed by arbitrary stabilizing boundary
lunctions get).

2.Dirichlet problem. In our further analysis the propreties of the Poisson's kernel of the
problem (1)-(3) play an essential role, particularly, their behaviour at large time intervals.
From our point of view these properties are very interesting for themselves. First, let us
consider the DiricWet problem (B("-)::I). A5 a result of this consideration, information
Important for all further arguments will be obtained.

Theorem!. The Poisson kernel Go(t,x) of the Dirichlet problem for equation (1) is defined
as

GO(t,x) = xt-4/3Ai(xt-1I3),
where Ai(z) -is the Airy function ([3],10.4.32).

f[QQf. Here we apply the method similar to that of surface potentials. According to this
method, at first the fundamental solution Z(t,x) of the Cauchy problem for equation (1)
must be find by means of usual Fourier-transformwith respect to space coordinate x, we
receive,

(4)
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Using formula (10.4.32 [3]), it is possible to express (5) in terms of the Airy function:
1 - .

Z(t,x) = - Jexp{iax + icr3t}dcr27t ....

Z( t,x)= fi/3Ai(xr1l3). (6)
Let us recall, that for Iarg z I<1t and Iz I~ the following asymptotic series presents the

Airy function (10.4.59,[3]): .

(5)

Ai(z) ~ .!.1t-1/2Z.1/4exp{-~}f (-l)kck~-t,~ = ~Z3/2
2 tao 3

Solution of the Dirichlet problem for equation (1), which saticfiesthe zeroth initial
conditions, is searched for in the form of binarylayer potential:

(7)

t

UI(t,X)= Ia~Z(t - 't,x)\jI('t)d't ,
o

where density-function ",('t) need to be defined. Using the differential equation for the
Airy function w"-zw=O (10.4.1,[3]) one can present Ul(t,X) as:

(8)

I ...

U'I(t,X) = Ix(t - 't)-4/JAi(x(t - 'tr'13)\jI('t)d't = 13Ai(z)\jI(t- (x / z)3)dz. (9)
o XI-lIS

Let X~o in the equality (9). Then one can receive,that:
'"

u(t,O)= \jI(t)I3Ai(z)dz.
o

Applyingthe asymptotic series (10.4.82[3]) for the Airy function, from which follows,
that

... 1IAi(j3)dj3= -. That means, that ",(t)=g(t).
o 3

Then we ultimately receive solution of the Dirichlet problem represented by formula:.
u(t,x)=IGo(t,x)g(t - 't)d't,

o
(10)

where Go(t,X)=xt-4/3Ai(xrl13)the Poisson kernel for the Dirichlet problem.

3.General boundary problem. Now let us pass to the investigationof the boundary-
value problems (I )-(3) in the most general case. Applyingthe Laplace-transformwith
respect to time coordinate t to equation (1), one can receive:

d3~ + pu = O,B( ~)il(p,x) 1-0 = g(p),u(p,x) ~ O,X-HX:>,dx dx x- .
(11)
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wherefunctionsg(p) and ii(p,x) -Laplac~ima8es of functions g(t) and u(t,x)
correspondingly. These functions are consideredfor x>Oand Rep>O.Characteric
equation. corresponding to (10) looks like

},,' + p = a,p = IP/exp{iq>}, (12)

aDd bas the ronowing solutions:

A.,(p) = Ipl"3 exp{i«cp + 1t) / 3 + 21t(j - 1) / 3)},j = 1,2,3. (13)

For {p:Rep>O} these solutions are situated at the appropriate sectors, presented at Fig. I.

Ooly one root A.2(P)among these three ones,

bas negative real part, and therefore it defines

the 501utions of problem (11)-(12) by formula:

U(p,x) = g(p)B(A~(p)r' eXP{Al(P)X}.
Thus, we have received the representation for

bounded solutions u(t,x) of the problem (1)-(3) as
,

u(t,x) = IG(t-t,x)g(t)dt,
o

Fig.I. ( 14)

where

'r"i.o

G(t,x) = (2nifl Jexp{pt + A2(p)X}(B(A.2(p»f'dp -
y-ico

\he Poisson kernel of the problem (1)-(3), and y - suitable, generally speaking, large
coough positive constant.

The analysis offonnula (15) leads to the statement of the followingmain condition.

Condition a.. All zeros of polynomial B(A.) are situated at the sector

I\"' {A.eC:argA e(-Sn /6,+S1t /6}.

nus condition is equivalent to the requirement that all zeros of the algebraic function
f(p)=B(A.ip» are situated at the half-planeRep<Oof the complex p-plane.

".Poisson kernels of general boundary -nlue problems. Let us pass to the

investigationof Poisson kernels G(t,x) of boundary-value problems (1)-{.3).
Theorem 2. Let the conditiona. be held. Then
I) for t E (0,1]. x > 0, the following estimatioJlis valid

jG(t,x)IS Ctexpl-c(xt-II')"i};
2)the following representation takes place:
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G(t,x) = GO(t,x)B(Otl + G1(t,x),
where for t ~ 1 for the function G1(t,x) the following estimation is valid:

(16)

(17)
...

3)integral J IG(t,x)ldt is uniformlybounded with respect to x.
o

Proof. Let us concisely set forth the proof of the statement 2). Statement 1) is prooved by
the help of analogous concept then, but it is essentially more simple. Statement 3)
immediately follows ITom 1) and 2).

Let us use the identity:

B(A2(P)f' = B(Orl + (B(O) - B(A2(P»)(B(O)B(A2(P»fl..
By means of it, Poissonkernel G(t,x) can be written in the formof (16), where

y+ice r

G,(t,x) = -(21tit' Jexp{pt+ A2(P)X}2:bvCA2(p)r(B(O)B(A2(P»t'dp,v=1y-ico

where y -arbitrary positive number. Sebsequently introducing new integral variables
t " "-3/2 " xt-113 " > 1 d

. .
II h C h h fiq = P ,q = x q,x = ,x - , an usmg systematlca y t e auc y t eorem rom

the theory of analyticalfunctions,we receive equality

- "3/2 r+i«> r b A (q
"
)

V

(XI/2C1/3 )
V

G ( )
x J {(" A (

"
»

"3/! }" v 2 d" (18)I t,x =-2 .
t exp q+ 2 q X L u" /~ /",,"I/L-1I1 q.

1tl r-i«> v=1

In the last integral let us pass ITomintegration along straight line, parallel to imaginary
axis (y-ioo,y+ioo)to integrationalong two rays that comes iTomthe point y+iOand makes
with imaginary axis angle <Pounder 1mq> 0 and -<Pounder 1mq< 0, <Po-rather small

positive number. Such transition is possible because of the analyticity <,?f integrand
function due to the conditiona., which is guaranteed in the region k'q
Q = {q:q= y + ivexp(isignv<p},v e(-cx>,eX),O~ <p~ <Po}. Jr

This region is containedbetweenthe straight line Re q=y and rays

J r ={q:q =y + ivexp(isignv<j>o)'V e (-eX),eX)} (Fig.2)

Fig.2.
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In order to estimate G1(t,x),which is defined by integral with J1, it is necessary to carry out

q=y -Ivlsin</>o +ivcos</>o,q EJ1,

the foll~~ing calculations:lql2=y2 + v2 - 2yvsin</>0 ~ (y2 + V2)(1- sin </>0)' (191)

Iqr 5: y2 + v2,

(if¥+ VN)6 5: 26 max(vy,VN)6 5: 64(y2 + v2),

\Mi ~ 6~ (1- sin </>oY/6(vy + VN),

q = Iqlexp{i\Vo},I\Vol= (1t / 2) + </>0'

Re A2(q) = -Vfficos \V0 5: - ~ (1 - sin </>0 Y/6 cos( 1t +</>O)(Vi + VN) =64 6 3

= -81(vy + VN),81 > O.

lexp{(q+ A2(q))X3/2}15:exp{y -Ivlsin</>o- 81(vy + Ivr/3)x3/2}~

=exp{[(y - 81y 1/3)-Ivlsin</>o~ 81IvI1l3]X3/~}, .

where -<h=Y-Olyll3can be made negative thanks to appropriate choice of a rather smally.
Condition a results in the existenceof positive constant 00such; that

IB(O)B(A2(q)XI/2t-1/3)1 ~ 80,

Equality (18), inequality (191,2,3)result in the following:

IGI(t,x)l5:

X3/2 r X 112 xll2 .

5: CI- Jlexp((q + A2(q))X3/2)IL:bv(A2(q)\i3)(B(O)B(A2(q)li3)rldq .t J v=1 t tT

" 3/2 r" v/2

5: C280-1 Xt eXP{-82x3/2}[ exp{(~lvlsin</>o -: 811v11l3)X3/2}~(y2 + V2r/6 ~V/3dv 5:

X3/2+r/2

5: C3 413 exp{-82x3/2} ~ C4 (a)t-4/3 exp{ -(82 - a)x3/2} =t

= C4 (a)t-4/3 exp{ -(82 - a)(xt-1/3)312}.(20)

Thus, we have prooved property 2) for the Poisson kernel G(t,x).

,.Stabilization. Now we pass to the proof of the theorem on stabilization.
Definition. Continuous alongfO,oo)function get) is called stabilizing,if there exists finite limit
go of the function get) under t~oo.



Theorem 3.Let the condition exbe fulfilled. Then solutions u(t.x:) of the problem (1)-(3),
being represented by the Poisson integral (14) and being constructed by any stabilizing
boundary function g(t), is stabilizing uniformly in any segment [O,A] to the function

uo(x)=gorG(t,x)dt. .
Proof.Let us definefunctionv(t.x)=u(t,x)-Uo(x).Let us representv (t.x) as the following: .

t .. t

v(t,x) =JG(t - t,x)g(t)dt - JG(t - t,x)godt= JG(t - t,x)[g(t) - go]dt-
00. 0

..

-J G(t - 't,x)godt = J1(t,x) - J2(t,x).t
(21)

p

Let us consider the following function:
T t

J.(t,x) = JG(t - t,x)(g(t) - go)dt + JG(t - 't,x)(g(t)- go)dt.o T
(22)

As g('t)-+8o under 't-+OO,then for any positive s there exists such constant T(e), that for

V't > T(E):lg(t) - ~ol < E. Letusconsider,that t>T(e)+l.
.Then under T=T(e):

I

I G(t - t,x)(g(t) - go)dt
l
;S;;e I IG(t- t,x)ldt ~ ejIG(t,x)~t;S;; Ce

T(o) T(e) 0

I

T<O)

I

T(e) t

!G(t - t,x)(g(t) - go)dt ;S;; 2M! IG(t- t,xldt = 2Mt-Lt:(t,x)ldt
M=sup Ig(t) I .

From the representation (16), condition ex, evaluations Ai(xrl/J) and (17) the
estimation follows (under t ~ 1 , x ~ A):

IG(t,x)l;S;; C(l +Ixl)t-413'";S;; C(l + A)t-4l3.
Expressions(232),(233)resultin:

'!~t - t,x)(g(t)- g,)dt ';6Mc(1 +AJ[(t- T(£))" - t"]
To estimate J2(t,x) let us use evaluation (233):

IJ2(t,x)1 = Igo~ G(t,X)dtl ~ IgolC(l + A)! t-413dt =3Cjgol{1 + A)C113 .

The statement of the theorem 3 follows£rom(231),(23..),(23,) .
The resarchwas partiallysupportedby grants ofISF and INTAS-94.

(235)
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