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ABSTRACT 
 
One way to characterize neural feature selectivity is to model the response probability as a nonlinear function of the 
output of a set of linear filters applied to incoming signals. Traditionally these linear filters are measured by probing 
neurons with correlated Gaussian noise ensembles and calculating correlation functions between incoming signals and 
neural responses. It is also important to derive these filters in response to natural stimuli, which have been shown to 
have strongly non-Gaussian spatiotemporal correlations.  An information-theoretic method has been proposed recently 
for reconstructing neural filters using natural stimuli in which one looks for filters whose convolution with the stimulus 
ensemble accounts for the maximal possible part of the overall information carried the sequence of neural responses.  
Here we give a first-time demonstration of this method on real neural data, and compare responses of neurons in cat 
primary visual cortex driven with natural stimuli, noise ensembles, and moving gratings. We show that the information-
theoretic method achieves the same quality of filter reconstruction for natural stimuli as that of well-established white-
noise methods. Major parameters of neural filters derived from noise ensembles and natural stimuli, as well as from 
moving gratings are consistent with one another. We find that application of the reverse correlation method to natural 
stimuli ensembles leads to significant distortions in filters for a majority of studied cells with non-zero reverse-
correlation filter.  
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1. INTRODUCTION 
Neural feature selectivity has traditionally been studied using stimuli that can be described by a small number 

of parameters, so that the input/output function can be measured with sufficient detail. The classic example is the use of 
bars and gratings to study neurons in primary visual cortex. Such an approach is contingent on the fact that neurons are 
responsive to the class of stimuli used [1,2]. Finding an appropriate class of stimuli may require a serendipitous 
discovery, such as the one made by Hubel and Wiesel for neurons in primary visual cortex [1]. However it is not clear 
even at the next stage of visual signal processing, what is the most appropriate stimuli class to be used (see, however, 
Ref. [3,4]). An alternative approach is to use a broad range of stimuli, and, through some sort of statistical averaging, to 
find out what filter is being used by a particular neuron [5-14].  From the statistical analysis point of view, it is most 
advantageous to use stimuli with known statistical properties, such as (possibly correlated) Gaussian noise. While it 
may suffice for the first few stages of visual signal processing, neurons at higher level, whose structure we are most 
interested in, are left unresponsive by noise ensembles. Neurons at all stages of signal processing are responsive to 
“natural” stimuli, i.e. those stimuli that are derived from our surroundings. It turns out that such stimuli have specific 
statistical properties, which vary surprisingly little with a change of environment from which they are derived [15-20]. 
The most robust features are strong spatiotemporal correlations with characteristic 2/1 f  spectrum, where f  is a spatial 
frequency, scaling of the probability distribution as a whole, and strong deviation of the probability distribution from a 
Gaussian one. The non-Gaussian character of correlations invalidates many methods developed to study neural feature 
selectivity [21]. However, it may be possible to use ideas form information theory to bypass the problem of non-
Gaussian effects in natural stimuli, thus allowing their use in large-scale systematic neurophysiological recordings [21].   
 We decided to test the newly proposed information-theoretic method [21] on neurons in primary visual cortex, 
whose properties are well studied. Each of the neurons has been probed by white noise and natural stimuli ensembles, so 
that we can compare the filters obtained with the information-theoretic method to the filters derived from the neuron’s 
responses to white noise. In addition, neural responses where probed with moving (sinusoidal or square) gratings to 
determine their optimal orientation and spatial frequency. To analyze neural responses to either white noise or natural 
stimulus ensembles we use the framework of the so-called linear-nonlinear model, according to which the probability of 
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a response  – a spike in our case – given a stimulus s
r

 is some nonlinear function (whose shape is not a priori specified) 

of projection of the stimulus s
r

onto a set of filters iê , i=1…k, : 

)ˆ,...,êsf()spike()s |spike( 1 kesPP ⋅⋅= rrv

         (1) 

The most important simplification made in Eq. (1) is that the number of filters k used by the neuron is much less than 
the dimensionality of the stimulus itself. Even though neurons may have many filters, in this paper we will present the 
results of simulations for neurons with up to two filters. In analyzing data from neurons in primary visual cortex, we 
carry out the analysis as if they had just one filter1. We concentrate on cells for which the white-noise filter is non-zero. 
This biases our subset of cells towards simple cells, which are thought to be well described by one filter. However our 
primary goal in this work is to demonstrate the use of the information-theoretic method on neural data and to verify that 
the neural filters it provides are consistent with other independent measurements. Under these circumstances the use of 
mostly simple cells is desirable.  

2. METHODS 
Experimental recordings. All experimental procedures where conducted under a protocol approved by the University 
of California, San Francisco Committee on Animal Research and have been described in detail elsewhere [22,23]. 
Briefly, spike trains were recorded using tetrode electrodes from primary visual cortex of anesthetized adult cats. The 
visual stimuli s

r

were presented as two-dimensional spatiotemporal patterns of light intensities on a video monitor with 
a refresh rate of 120 Hz. The frame update rate was 60 Hz in the case white noise stimulus ensemble and 30 Hz in the 
case of a natural stimulus ensemble. In addition cells were probed with full-field moving periodic patterns (gratings). 
The optimal orientation was determined from cell’s responses to a set of 10° spaced orientations and spatial frequency 
of 0.5 cycles/degree and temporal frequency of 2 Hz. The optimal spatial frequency for a given cell was derived from its 
responses to a set of moving gratings of optimal orientation and variable spatial frequencies (linearly spaced between 
0.1 and 4 cycles/degree). A cell was classified as simple or complex depending on the ratio of the first Fourier 
component F1 of its response to a moving grating of optimal orientation and spatial frequency to its mean F0: a cell was 
considered  simple if F1/F0>1 and an complex, otherwise. To estimate the information carried by the arrival of one 

spike, spikeI , an 11sec long segment of the natural movie was repeated from 50 -150 times.  

Filter reconstruction from neural responses to a white-noise ensemble – reverse correlation method.  Generally, 
the problem of reconstructing neural responses consists of two parts, one of which is to find the underlying linear filters 

and the other one is to find the nonlinear function )ˆ,...,êsf( 1 kes ⋅⋅ rr

 in Eq. (1) that determines the probability of a spike 

given stimulus. If stimuli are drawn from a Gaussian distribution, then it is possible to use Wick’s theorem to show that 
the problem of finding the linear filters separates from that of finding the nonlinearity associated with them. In 
particular, in the case of a white noise ensemble, one may obtain one of the linear filters by computing a correlation 
function between spikes and stimuli: 

sPsPse
rrr

)spike()|spike(ˆSTA −= ,         (2) 

which as may be seen from Eq. (2) is computed by taking the average stimulus weighted by the number of spikes it 
elicits and subtracting the average stimulus multiplied by the overall number of spikes, the procedure also known as the 
spike-triggered average (STA). The magnitude of the filter is irrelevant, since rescaling of the vector can be accounted 
for by the appropriate rescaling of the input/output function (1) which converts projections on the relevant filter into 
spike probability. Therefore, we will normalize all of the derived filters to unit length.  

Once the filter has been determined, the nonlinear input/output function can be mapped directly from 
experimental data, using the Bayes’ rule: 
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1 As might be expected such an approximation is better for some classes of cells than others. For neurons in primary 
visual cortex, responses of simple cells are thought to be described by one filter, while responses of complex cells 
require at least two filters for their description. Accordingly we find that the amount of information that can be 
accounted for by projections onto just one linear filter is significantly higher for simple cells as opposed to complex. 
The detailed comparison of simple vs. complex cells responses will be given in subsequent work.  
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We will be using this expression to map the input/output function for any filter found and any stimulus ensemble used. 
Filter reconstruction from neural responses to a correlated Gaussian ensemble.  In the presence of correlations 
within the stimulus ensemble, the reverse correlation function (2) is biased towards those Fourier components that occur 
most often. Therefore the neural filter is found by normalizing expression (2) by the covariance matrix of the stimulus 
ensemble used: 

jijisssPsPsCe ss-C       ,)spike()|spike(ˆ ij
1

estimateGaussian =−= − rrr

,                        (4) 

where notation estimate-Gaussianê notes the fact the filter has been obtained assuming Gaussian statistics for the input 

signals.  
Filter reconstruction from neural responses to a natural stimuli ensemble – most informative dimensions.  In 
cases where the probability distribution of stimuli deviates significantly from a Gaussian one, assuming an incorrect 
form of the nonlinearity leads to incorrect estimates for the linear filters themselves. One possibility is to re-estimate the 
nonlinearity using the Bayes’ rule of Eq. (3) for each of the trial directions in the stimulus space and find the linear filter 
used by the neuron through an optimization procedure. This is in effect what is done when different directions v

r

in the 
stimulus space are evaluated according to the Kullback-Liebler distance between the probability distributions of 

projections
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where the subscript v
r

in probability distributions notes the fact the they depend on vector v
r

 along which they were 

evaluated. The information )(vI
r

 along a particular direction v
r

 quantifies the relevance of this direction for generating 

spikes. The ratio of the probabilities distributions )(/)spike|( xPxP vv
rr in (5) gives an estimate of the input/output 

function )( vsf
rr ⋅ of Eq. (3). If no change occurs in the probability distribution )(xPv

r  upon observation of a spike, 

then 0)( =vI
r

 and the corresponding direction v
r

is irrelevant for spike generation. The linear filter used by a particular 

neuron is determined through an optimization procedure where information )(vI
r

 is maximized as a function of the 

vector v
r

. The presence of local maxima necessitate the use of Monte Carlo methods, and we implement a simulated 
annealing scheme, where information is maximized in directions of successive gradients of information (5). Vectors 
with lower information values are accepted with Boltzman probabilities.  We first present the results of the optimization 
algorithm in reconstructing filters for model neurons, which have that advantage that their filters are known. It is 
essential that the deviations between the reconstructed and model filters decrease with the number of spikes, the 
parameter that controls signal-to-noise ratio. Therefore the observed deviations in the reconstructed filter are on average 
due to noise and not to a failure of the optimization procedure, see below.  

Upon completion of the optimization scheme, we will compare the information )(vI
r

 along a particular 

direction v
r

to the overall information carried by the arrival of one spike spikeI . The ratio of the two quantities describes 

the quality of reconstruction. Fortunately, the overall information can be estimated in a model-independent way [25] 
from repeated presentations of a subset of stimuli in order to sample the probability distribution )|spike( sP

r

: 
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Below we illustrate the results of maximizing information on two examples taken to mimic properties of cells in 
primary visual cortex.  

A model neuron with two relevant directions describing a spatiotemporal receptive field. In preparation to 
analyze responses of neurons in primary visual cortex, we have analyzed a model where the probability of a spike 

depends on stimulus history. The model filter 1̂e is a concatenation of 3 successive spatial filters, each one of them is a 
spatial Gabor function, cf. Fig. 1, upper row. Even though this particular example has a space-time separable receptive 
field, we make no such assumptions during reconstruction. The relevant direction we are about to find has 
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approximately 1000 independent parameters. In a model, a given sequence of 3 frames leads to a spike if projection 

ses
r⋅= 11 ˆ  reaches a certain threshold value ts  in the presence of noise, i.e. a spike occurs if nss t +>1 , where n  is a 

Gaussian random variable of variance σ2 and zero mean. Thus, the model is specified by the filter (receptive field) 1̂e , 

the threshold value of projection ts , and noise variance σ2.  Here, the threshold value was set at st= 2.0 and a noise 

standard deviation σ=0.5 (both parameters are measured in units of standard deviation of the projection value s1 onto the 
model filter). These values set the probability of a spike per frame at ≈ 0.06, which for frames shown at 30Hz 
corresponds to a firing rate of ≈ 2 Hz. The total number of spikes across all repetitions of the movie was ≈ 10,000 (the 
movie duration is approximately ≈ 9min, and it was repeated 10 times). The STA vector or reverse correlation function 
(2) is shown in the middle row of frames, Figure 1. It represents a broadened version of the underlying relevant 
direction, a consequence of spatiotemporal correlations present in the stimuli. If stimuli were drawn from a Gaussian 
probability distribution, the effects of correlations could be removed by multiplying the STA vector by the inverse the a 
priori covariance matrix, cf. Eq. (4). As mentioned above this procedure fails because natural scenes have higher than 
second order correlations. In contrast, it is possible to obtain a good estimate of the relevant direction by maximizing 

information directly. Frames of the recovered relevant direction maxv
r

found by maximizing information are shown in 

the bottom row in Figure 1. The quality of reconstruction, as judged by the final value of the projection was on 
average: 007.0855.01̂max ±=⋅ ev

r

, with projections of the stimulus ensemble on it accounting for 

002.0999.0/)( spikemax ±=IvI
r

. The quality of reconstruction in terms of projection between the reconstructed and 

model filters improves as the number of spike increases, as is discussed in detail below. We have set the model filter to 
be equal to zero on the frame during which a spike occurs to describe time delay. This and other acausal frames (not 
shown) could be used to verify algorithm accuracy, as well as typical error values in the reconstructed vector. For 
example, the STA vector has remaining structure ay the time lag 0, while the reconstructed vector has very little 
structure at this time lag, as quantified with respect to the noise level. 

A model neuron with two relevant directions describing a spatiotemporal receptive field. A sequence of spikes 
from a model cell with two relevant directions was simulated by projecting each of the stimuli on two vectors e1 and e2 
which are taken to mimic properties of complex cells found in primary visual cortex. These vectors are shown in two-
spatial dimensions and at 3 discrete time lags before a spike in Figure 2(a,b). Their spatial dependence is described by 
the same Gaussian envelope and with π/2 difference in their spatial phase (sin and cos). A particular frame leads to a 
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describing the probability of a spike given 
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standard deviation. The STA vector is 
shown in frames of the middle row, with 
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spatiotemporal correlations present in the 
stimulus movie. The corresponding 
recovered nonlinearity is shown to the right. 
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standard deviations. 
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spike according to a logical OR, that is if either |s1| or |s2| exceeds a threshold value st in the presence of noise, where 
s1=s ·e1 and s2=s ·e2. Similarly to the previous example of a model simple cell, a spike is elicited if either |s1|>st+ n1 or 
|s2|>st+n2 is true. Here, n1 and n2 are independent Gaussian variables with zero mean and variance σ2 modeling the 
effects of neural noise. The marginal probabilities P(spike|s1) and P(spike|s2) are also shown next to the corresponding 
vectors. The threshold for eliciting a spike was set at 2.0 standard deviations of the projection values s1 and s2, and the 
noise level was 0.5 in the same units. The resulting spike train with respect to the natural movie had an average firing 
rate of 4 Hz, with the overall number of spikes ~8,000 in the data set. We note that even though a simple logical 
operation has been chosen to specify the probability of a spike given the two projection values, we do not assume a 
particular shape of the input/output function during the reconstruction process. Due to the contrast-inversion symmetry, 
the STA vector calculated according to Eq. (2) would be zero in the case of a white noise stimulus ensemble. In the case 
of natural stimuli ensemble, the vector of STA is broadened in both space and time due the strong spatiotemporal 
correlations present in the ensemble, and not surprisingly, bears little resemblance to the underlying relevant 
dimensions, cf. Figure 2(c). Here we show that maximizing information as a function of direction in the stimulus space 
allows us to recover one of the relevant dimensions even under more natural stimulus conditions. The result of 
information maximization is shown in panels (d). The single most informative direction accounts on average for 

02.055.0/)( spikemax ±=IvI
r

 of the overall information carried by arrival of single spike, and has projection of 

03.083.0 ± onto the plane of the two relevant vectors )ˆ,ˆ( 21 ee . Similarly to the case of a model simple cell with one 
relevant dimension, projection on the relevant plane increases with increasing number of spikes, see below. Even 
though the single most informative direction accounts for about half of the information in the carried by time of arrival 
of one spike, it gives values of preferred orientation and spatial frequency which are similar to those of the underlying 
two model vectors. 
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Figure 2. Analysis of a model neuron with two relevant dimensions describing a spatiotemporal receptive field. To 
describe the time dependence of the receptive field the time axis has been discretized; 3 separate time lags are 
considered, with a spike occurring on the right most frame at time lag 0. The first and second relevant dimensions of 
the model neuron are shown in the two upper rows, with marginal spike probabilities given projections of the two 
vectors. Row (c) describes the spatiotemporal STA with the corresponding spike probability given projection values 
of stimuli on it. The most informative vector is shown in row (d) and has projection 0.83±0.03 for a data set with 
~8,000 spikes. 
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Signal to noise ratios of reconstruction filters. Our estimate of information )(vI
r

along a particular direction 

v
r

in the stimulus space is largely limited by the knowledge of the conditional probability distribution 

)spike|( vsP
rr ⋅ .The number of recorded spikes spikeN is the number of available samples from this probability 

distribution. Therefore one might expect that with increasing number of spikes, the most informative vector obtained for 
a given spike sequence will approach underlying relevant dimensions used by the neuron. This is indeed the case, and in 

the case of a neuron with one relevant dimension 1̂e  the projection of the (normalized) most informative vector maxv
r

on 

1̂e  approaches one in the limit of large spikeN [21,26]: 2ln2/]['Tr1ˆ spike
1

max1 NAve −−≈⋅ r , where A  is the Hessian 

of information evaluated at maxv
r

 and trace 'Tr  is taken in the subspace orthogonal to the vector along which Hessian is 

evaluated. The main conclusion is that the expected errors when maximizing information are well behaved and decrease 
as 1/Nspike with increasing number of spikes. We emphasize that the expected deviation between the most informative 
vector and the underlying relevant dimension are of the same order of magnitude as errors of the reverse correlation 
method, where the neural filter is obtained according to Eq. (4) [21,26]. Since the reverse correlation and information 
maximization methods give similar errors when analyzing neural responses to Gaussian noise ensembles, the errors of 
the reverse correlation method will be larger when it is applied to a non-Gaussian stimulus ensemble. In Figure 3 we 
show how the projection value between the reconstructed and model vector increases (error decreases) when the number 
of repetitions, and therefore number of spikes, increases. Most importantly the reconstruction quality of one filter per 
cell is similar in the case of a simple and complex cell. Real neurons are likely to have more than one relevant 
dimension. However, we might be able to describe some of their neural characteristics by finding just one of the 

relevant filters for each neuron, as demonstrated in Fig. 2 above. Simulations of Figure 3 show that scaling with spikeN   
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Figure 3. (a) Analysis of a model simple cell with one relevant direction. The reconstruction quality as quantified by 

max1̂ ve
v⋅  increases to one with increasing number of spikes

spikeN . Regardless of the number of spikes, the most 

informative dimension accounts for nearly all of the information carried by the arrival of one spike (the 
overestimate of the fraction of information explained 

spikemax /)( IvI
r

observed for small 
spikeN  is due to overfitting. 

(b) Analysis of a model complex cell with two relevant dimensions 1̂e  , 2ê . Similarly to the case of a model neuron 

with one relevant dimension, the reconstruction quality as quantified by ( ) ( )2
max2

2
max1 ˆˆ veve

vv ⋅+⋅  approaches one with 

increasing number of spikes
spikeN . Regardless of the number of spikes, the most informative dimension accounts for 

approximately half spikeI , as should be expected given parameters of the model neuron that weighs contributions 

from the two relevant dimensions equally. 
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of projection values of the most informative direction onto the relevant plane )ˆ,ˆ( 21 ee  of a complex cell is similar to that 

of projection values onto the single relevant dimension 1̂e of a simple cell. We also note that the dependence of the 

information values accounted for one most informative dimension on spikeN is not as strong as the increase in the 

projection value max1̂ ve
r⋅ .  

3. RESULTS 
We have probed neurons in cat primary visual cortex with three different stimuli ensembles: white noise 

stimuli, natural stimuli, and moving gratings. For each of the neurons in our dataset, we calculate two estimates of the 

filter used by the neuron for producing spikes: vector noise whiteê  is obtained as a spike-triggered average for a white 

noise stimulus ensemble using Eq. (2); vector stimuli naturalê  is obtained as the most informative dimension for a natural 

stimulus ensemble. From the two estimates for the neural filter we calculate such major parameters as preferred 
orientation and spatial frequency. In addition, an independent estimate for preferred orientation and spatial frequency 

for each neuron is obtained from its responses to moving gratings. Only neurons with non-zero noise whiteê  vector have 

been included in the current analysis. Our first result is that all three estimates of the preferred orientation and spatial 
frequency are consistent with one another, cf. Figure 4. The agreement between preferred orientation value derived from 

natural stimuli filter stimuli naturalê  and that obtained from grating responses is as good as or better, than agreement 

between preferred orientation value obtained the white noise filter noise whiteê  thorough a well established method of 

reverse correlation. Similarly, the values of the preferred spatial frequencies obtained from theses three independent 
measurements are consistent with one another, cf. Figure 4(b). Thus providing support for the validity of looking for 
most informative dimensions as a method to recover neural filters for correlated non-Gaussian stimuli ensembles, such 
those derived from the environment. 

 We next compare the two estimates of neural filters noise whiteê  and stimuli naturalê directly with each other. We 

also apply the reverse correlation method with corrections for power spectrum (4) to natural stimuli ensemble. The 

obtained vector estimateGaussian ê would have been a valid estimate for the neural filter if natural stimuli obeyed Gaussian 

statistics or if a particular neuron under study is strictly linear [21]. We find that the most informative vector 

stimuli naturalê  is always closer to noise whiteê  (in a direct Euclidean sense in the space of light intensities) than the 

corrected for power spectrum reverse correlation vector estimateGaussian ê , cf. Figure 5. One might ask whether 

improvement shown in Figure 5(a) from filter estimate estimateGaussian ê  to the information-theoretic one stimuli naturalê  is 

significant. In Figure 5(b), we show that in about ~70% of cells this difference is significant. To determine whether the 
two methods give significantly different results, we calculate distributions of projection values of estimates derived by 
either one of the two methods from different data segments, and find the mean and standard deviation of projection 

values |ˆˆ| estimateGaussian estimateGaussian ee ⋅ and |ˆˆ| stimuli naturalstimuli natural ee ⋅ . The difference between vectors estimateGaussian ê  

obtained through reverse correlation procedure (4) and stimuli naturalê  obtained by maximizing information is considered 

significant if the average projection value |ˆˆ| estimateGaussian stimuli natural ee ⋅ lies below the average 

|ˆˆ| estimateGaussian estimateGaussian ee ⋅ by more than one standard deviation. The percentage does not change when we 

distinguish between simple and complex cells, however only cell with non-zero white noise filter where included in the 
subset.  

4. DISCUSSION 
Neural feature selectivity can be studied with respect to various stimulus ensembles, be it collection of bars, 

sequence of gratings, or white noise stimuli. Ultimately, we are only interested in neural responses to artificial stimulus 
ensembles to the degree to which they provide an approximation of neural responses in their working regime, which for 
sensory neurons mean processing of signals derived from the environment. Even though one might argue in each 
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particular case whether a chosen stimulus ensemble is “natural enough”, our primary purpose in this work was to 
demonstrate that neural filter properties can be derived with respect to any, sufficiently diverse ensemble, of stimuli that 
experimenter may think is relevant. Most importantly, in doing so we do not assume that stimuli are Gaussian, since 
ensembles of both visual and auditory stimuli taken from our environment have been shown to deviate strongly from a 
Gaussian distribution. Our particular ensemble of natural stimuli has been obtained by walking with a video camera 
through a park. What we have shown is that despite the complicated spatiotemporal correlations present in our 
ensemble, the neural filters could be in essence “decorrelated” through the information-theoretic procedure of 
maximizing information.  To some degree this “decorrelation” can be achieved by such standard methods as reverse 
correlation with power spectrum normalization Eq. (4). However, for majority (70%) of even simple cells, which are 
thought to be well described by one filter, these leads to significant filter distortions and could make us overestimate the  
difference between neural filters obtained from neural responses to white noise and more natural stimuli ensembles. 

When comparing filters derived from neural responses to white noise and natural stimulus ensembles, we find 
that their major parameters, such as size, preferred orientation and spatial frequency are consistent with one another and 
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Figure 4. (a) Pairwise comparison of preferred orientation values derived from the natural stimuli filter, the white 
noise filter, and moving gratings across an ensemble of 62 cells that had non-zero white noise filter. Standard 
deviations averaged across the ensemble are shown as error bars in a corner of each subplot. Solid lines have slope 
one. Consistency with a hypothesis that preferred orientation values are the same is evaluated by χ2-test, and Q 
gives the probability that the observed discrepancies are chance fluctuations [27]. (b) Pairwise comparison of 
preferred spatial frequency values derived from the natural stimuli filter, the white noise filter, and moving gratings. 
Again, only cells with non-zero white noise filter have been included. 
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with direct measurements of these parameters obtained with moving gratings. This can be viewed as additional 
verification of the algorithm since it is unlikely that major parameters of neural filters (receptive fields) would 
drastically change when stimulus ensemble is substituted with another. In terms of signal to noise ratios of the two filter 
estimates, we find that the agreement between parameters obtained from natural stimuli filter and moving gratings is as 
good as that between parameters obtained form white noise filter and moving gratings. This suggests that the 
information-theoretic method achieves comparable signal to ratios in filter reconstruction as those of reverse correlation 
method for noise ensemble. Analytically, the convergence properties for the information-theoretic method have been 
shown to be comparable those of reverse correlation method [21] for the same number of recorded spikes in a dataset.  

Aside from the fact that major parameters of filters derived from white noise and natural stimuli ensemble are 
the same, one might notice that the direct dot product between the two filters, cf. Figure 5a, is often much smaller than 
could be explained by the observed noise level, as judged by how different, on average, two white noise filters could be 
when calculated from different stimulus presentations. This opens a series of questions as to what parameters of neural 
filters do change with the stimulus ensemble, some of which we hope to address in the subsequent work. The 
information-theoretic method provides us with means for a rigorous reconstruction of neural responses to natural 
stimuli. 
 In conclusion, we demonstrate for the first time on real neural data that it is possible to reconstruct neural 
filters from natural stimuli without assuming the linearity of neurons under study. In particular, the filter estimate 
obtained by maximizing information is always closer to the white noise filter than that obtained assuming that the cell is 
completely linear (reverse correlation function corrected for non-uniform power spectrum). The method does not 
require extraordinary amount of physiological data and performs as good as standard methods (reverse correlation, 
spike-triggered average) given similar number of spikes. Across the population of cells with non-zero white noise 
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filters, major parameters of neural filters derived from noise ensembles and natural stimuli were consistent with one 
another as well as with direct measurements of these parameters obtained with moving gratings. 
 

ACKNOWLEDGEMENTS 
We thank William Bialek for many helpful suggestions on various stages of this work.  We are very grateful to the 
UCSF Keck Center community for providing computer time that made this research possible. Additional computing 
resources were provided by the National Partnership for Advanced Computational Infrastructure at the San Diego 
Supercomputer Center through NSF cooperative agreement ACI-9619020. T.S. was supported by grants from the Sloan 
and Swartz Foundations. We also acknowledge financial support from National Eye Institute through grant R01-
EY13595. 

REFERENCES 
1. D.H. Hubel and T.N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual 

cortex”, J. Physiol., 160, 106-154 1962. 
2. D. L. Ringach, G. Sapiro, and R. Shapley, “A subspace reverse-correlation technique for the study of visual 

neurons”, Vision Res., 37, 2455-2464, 1997. 
3. J. L. Gallant, J. Braun, D. C. van Essen, “Selectivity for polar, hyperbolic and cartesian gratings in macaque visual 

cortex”, Science, 259, 100-103, 1993. 
4. J.L. Gallant, C.E. Connor, S. Rakshit, J.W. Lewis, and D.C. van Essen, “Neural responses to polar, hyperbolic, and 

Cartesian gratings in area V4 of the macaque monkey”, J. Neurophysiol., 76, 2718-2739, 1996. 
5. E. de Boer and P. Kuyper, “Triggered correlation”, IEEE Trans. Biomed. Eng., 15, 169-179 (1968). 
6. R. R. de Ruyter van Steveninck and W. Bialek, “Real-time performance of a movement-sensitive neuron in the 

blowfly visual system: coding and information transfer in short spike sequences”, Proc. R. Soc. Lond. B, 234, 379-
414, 1988. 

7. F. Rieke, D. Warland, R. R. de Ruyter van Steveninck, and W. Bialek, Spikes: Exploring the neural code. MIT 
press, Cambridge, 1997. 

8. N. Brenner, W. Bialek, and R. R. de Ruyter van Steveninck, “Adaptive rescaling optimizes information 
transmission”, Neuron, 26, 695-702, 2000. 

9. F. E. Theunissen, K. Sen, and A. J. Doupe, “Spectral-temporal receptive fields of nonlinear auditory neurons 
obtained using natural sounds”,  J. Neurosci., 20, 2315-2331, 2000.  

10. K. Sen, F. E. Theunissen, and A. J. Doupe, “Feature analysis of natural sounds in the songbird auditory forebrain”, 
J. Neurophysiol., 86, 1445-1458, 2001. 

11. F. E. Theunissen, S.V. David, N.C. Singh, A. Hsu, W. E. Vinje, and J. L. Gallant, “Estimating spatio-temporal 
receptive fields of auditory and visual neurons from their responses to natural stimuli”, Network: Comput. Neural 
Syst., 12, 289-316, 2001. 

12. E. J. Chichilnisky, “A simple white noise analysis of neuronal light responses”, Network: Comput. Neural Syst. 12 
199-213 (2001).  

13. O. Schwartz, E.J. Chilchilnisky, E.P. Simoncelli, “Characterizing neural gain control using spike-triggered 
covariance”, in “Advances in Neural Information Processing Systems 14”, edited by T. G. Dietterich, S. Becker, 
and Z. Ghahramani, MIT Press, Cambridge, MA 2002. 

14. J. Touryan, B. Liu, and Y. Dan, “Isolation of relevant visual features from random stimuli for cortical complex 
cells”, J. Neurosci., 22, 10811-10818, 2002. 

15. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells”, J. Opt. 
Soc. Am.  4, 2379-2394 (1987).  

16. D. L. Ruderman and W. Bialek, “Statistics of natural images: scaling in the woods”, Phys. Rev. Lett., 73, 814-817, 
1994. 

17.  D. L. Ruderman, “The statistics of natural images”, Network: Comput. Neural Syst., 5, 517-548, 1994. 
18.  D. J. Field, “What is the goal of sensory coding?”, Neural Comp., 6, 559-601, 1994. 
19. D. W. Dong and J. J. Attick, “Statistics of natural time-varying images”, Network: Comput. Neural Syst., 6, 345-

358, 1995. 
20. E. Simoncelli and B. A. Olshausen, “Natural image statistics and neural representation”, Annu. Rev. Neurosci., 24, 

1193-1216, 2001. 
21. T. Sharpee, N.C. Rust, W. Bialek, “Analyzing Neural Responses to Natural Signals: Maximally informative 

dimensions”, Neural Comp., 16, 223-250 (2004). 

Proc. of SPIE Vol. 5467     221



22. R.C. Liu, S. Tzonev, S. Rebrik and K.D. Miller (2001), “Variability and information in a neural code of the cat 
latareal geniculate nucleus”, J. Neurophys., 86, 2789-2806.  

23. A.A. Emondi, S.P. Rebrik, A.V. Kurgansky and K.D. Miller, “Tracking neurons recorded from tetrodes across 
time”, J. Neurosci. Methods, in press (2004). 

24. T. L. Adelman, W. Bialek, and R. M. Olberg, “The information content of receptive fields”, Neuron, 40, 823-833, 
2003. 

25. N. Brenner, W. Bialek and R. R. de Ruyter van Steveninck, “Synergy in a neural code”, Neural Computation, 12, 
1531-1552 (2000). 

26. L. Paninski, “Convergence properties of three spike-triggered analysis techniques”, Network: Comput. Neural Syst. 
14, 437-464 (2003).    

27. W. H. Press, S. A. Teukolsky, W. T. Vettenberg, B. P. Flannery, Numerical Recipes in C: the art of scientific 
computing,  (Cambridge University Press, 1992).  

222     Proc. of SPIE Vol. 5467


