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Using a generalized random recurrent neural network model, and by extending our recently developed mean-

field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015)], we study the

relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in

the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through

a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from

a silent to a chaotic state at a critical point we derive as a function of g. Above the critical point, although unit

activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This

provides a direct link between the network’s structure and some of its functional characteristics. We discuss

example applications of the general results to neuroscience where we derive the support of the spectrum of

connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we

study the stability of the cascade model for food web structure.
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I. INTRODUCTION

Advances in measurement techniques and statistical in-

ference methods allow us to characterize the connectivity

properties of large biological systems such as neural and

gene regulatory networks [1–4]. In many cases connectivity

is shown to be well modeled by a combination of random and

deterministic components. For example, in neural networks,

the location of neurons in anatomical or functional space, as

well as their cell-type identity, influences the likelihood that

two neurons are connected [2,5,6].

For these reasons it has become increasingly popular to

study the spectral properties of structured but random connec-

tivity matrices using a range of techniques from mathematics

and physics [7–14]. In most cases, the spectrum of the random

matrix of interest is studied independently of the dynamics

of the biological network it implies. Therefore, these results

can be used only to make statements about the dynamics of a

linear system where knowing the eigenvalues and eigenvectors

is sufficient to characterize the dynamics.

Here we study the dynamics of nonlinear random recurrent

networks with a continuous synapse-specific gain function that

can depend on the pre- and postsynaptic neurons’ locations in

an anatomical or functional space. These networks become

spontaneously active at a critical point that is derived here,

directly related to the boundary of the spectrum of a new

random matrix model. Given the gain function we predict

analytically the network’s leading principal components in the

space of individual neurons’ autocorrelation functions.

In the context of analysis of single and multiunit recordings

our results offer a mechanism for relating structured recurrent

connectivity to functional properties of individual neurons

in the network, and suggest a natural reduced space where

*Corresponding author: aljadeff@uchicago.edu

the system’s trajectories can be fit by a simple state-space

model. This approach has been used to explain the dynamics

of neurons in motor cortex by comparing the results of training

recurrent artificial neural networks (“reservoir computing”) to

neural data [15,16]. These applications have thus far assumed

the initial condition (i.e., the network before training) is a

completely unstructured neural substrate.

Recently we showed how a certain type of mesoscopic

structure can be introduced into the class of random recurrent

network models by drawing synaptic weights from a finite

number of cell-type-dependent probability distributions [13].

In contrast to networks with a single cell-type [17], these

networks can sustain multiple “modes,” characterized in terms

of the individual neuron autocorrelation functions.

Here these results are further generalized to networks where

the synaptic weight between neurons i,j is drawn at random

from a distribution with mean 0 and variance N−1g2
ij , where N

is the size of the network. The smoothness conditions satisfied

by the gain function g are stated below. This allows us to treat,

for example, networks with continuous spatial modulation of

the synaptic gain. The solution to the network’s system of

mean-field equations that we derive offers a new viewpoint on

how functional properties of single neurons can in fact be a

network phenomenon.

A. Model and main results

Consider a general synapse-specific gain function g(zi,zj )

that depends on normalized neuron indices zi = i/N , where

i = 1, . . . ,N . We assume that there is some length scale

s0 > 0 below which g has no discontinuities. That is, we let

g : (0,1]2 → R+ be a uniformly bounded, continuous function

everywhere on the unit square except possibly on a measure

zero set S0. The function g may depend on N in such a way

that its Lipschitz constant CL(N ) = C0
LNβ , with C0

L < ∞ and

1 > β � 0. Every point where g does not satisfy the above
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smoothness conditions must be on the boundary between

squares of side s0 where it does.

The network connectivity matrix is then J ∈ R
N×N with

elements

Jij = g(zi,zj )J 0
ij , (1)

where J 0
ij is a random matrix with elements drawn from

a distribution with mean 0, variance 1/N and finite fourth

moment. In the simulations we use a Gaussian distribution

unless noted otherwise.

In this paper we analyze the eigenvalue spectrum of the

connectivity matrix J and the corresponding dynamics of

the neural network. Note that by requiring that g is bounded

and differentiable on the unit square outside of S0 we allow

the synaptic gain function to be a combination of discrete

modulation (e.g., cell-type dependent connectivity for distinct

cell types, as in [13]) and of continuous modulation (e.g.,

networks with heterogeneous and possibly correlated in- and

out-degree distributions, as in [18,19]).

When g can be written as an outer product of two

vectors [i.e., g(zi,zj ) = g1(zi)g2(zj )], the model discussed

here overlaps with that studied by Wei and by Ahmadian et al.

[9,12], but those works also consider matrix models that are

not studied here.

The connectivity matrix J must not represent an all-to-all

connected network, as the distribution of elements of J 0 can

have a finite mass at 0 (see Sec. V). However, in the current

work we do not consider sparse models where the number of

nonzero elements is finite or scales sublinearly with N . Studies

of such matrices exist in the literature (for example, [20,21]),

but are limited to models with no structure.

In Sec. II we show that the spectral density of J is circularly

symmetric in the complex plane, and is supported by a disk

centered at the origin with radius r =
√

�1 with

�1 = max
{

λ
[

G
(2)
N

]}

, (2)

where G
(2)
N ∈ R

N×N
+ is a deterministic matrix with elements

[G
(2)
N ]ij = 1

N
g2(zi,zj ). Note that �1 is the Perron-Frobenious

eigenvalue of a non-negative matrix, so indeed �1,r ∈ R+.

For general synapse-specific gain function g it has not been

possible so far to obtain an explicit formula for �1. However,

we have been able to derive explicit analytic formulas in three

cases of biological significance. First, in Sec. IV we discuss the

case where G
(2)
N is a circulant matrix such that g(zi,zj ) = g(zij )

with

zij = min{|zi − zj |,1 − |zi − zj |} (3)

and show that �1 = 2
∫

1
2

0 g2(z)dz. This special case is im-

portant for large neural networks where connectivity often

varies smoothly as a function of neuron’s index. Moreover,

for this parametrization all the eigenvalues and corresponding

eigenvectors can be computed analytically, which will make it

possible to make stronger statements about the dynamics as is

explained in Secs. III and IV.

For two additional parametrizations of g, the current mean-

field approach is insufficient to fully characterize the dynamics,

but we can use the general result [Eq. (2)] to analytically

characterize the spectrum of the connectivity matrix. In Sec. V

we derive the support of the bulk spectrum and the outliers of

a random connectivity matrix with heterogeneous joint in- and

out-degree distribution. Finally, in Sec. VI we discuss a third

example pertinent to large scale models of ecosystems. These

systems are often modeled using g that has a triangular struc-

ture and in this case we also derive an analytic formula for �1.

Given the connectivity matrix J defined in Eq. (1), the

dynamics of neural network model with N neurons is described

by

ẋi(t) = −xi(t) +
N
∑

j=1

Jijφj (t), (4)

where φj (t) = tanh[xj (t)]. The x variables can be thought of

as the membrane potential of each neuron, and the φ variables

as the deviation of the firing rates from their average values.

Using a modified version of dynamic mean field theory

we show that in the limit N → ∞ this system undergoes a

phase transition, where r is the coordinate that describes this

transition and r = 1 is the critical point. Below the critical

point (r < 1), the neural network has a single stable fixed

point at x = 0. Above the critical point the system is chaotic.

We analyze the dynamics above the critical point in more

detail and find a direct link between the network structure

(g) and its functional properties. To that end we define N

dimensional autocorrelation vectors

�i(τ ) = 〈xi(t)xi(t + τ )〉, Ci(τ ) = 〈φi(t)φi(t + τ )〉, (5)

where 〈·〉 denotes average over the ensemble of matrices J and

time. Note that because the average of each element of J is zero

and the nonlinearity is an odd function, autocorrelations are

computed about the fixed point xi = φi = 0. These vectors

are restricted to the potentially low-dimensional subspace

spanned by the right eigenvectors of G
(2)
N with corresponding

eigenvalues that have real part greater than 1. Thus, although

the network dynamics are chaotic, they are confined to a low-

dimensional space, which has been suggested as a mechanism

that could make computation in the network more robust [22].

B. Separate excitation and inhibition

There are some limitations to the interpretation of the

dynamics in Eq. (4) with connectivity described by Eq. (1)

as a neuronal network. Most importantly, every column of J

has both positive and negative elements corresponding to the

unrealistic assumption that every neuron is both excitatory and

inhibitory, and the hyperbolic tangent nonlinearity implies that

firing rates can be both positive and negative. The usual justi-

fication of these assumptions is that every degree of freedom

xi is in fact an average over a small number of neurons some

of which are inhibitory and some are excitatory, and that φi

represents the deviation of the firing rate from the steady state.

A more satisfying treatment to this problem is the recent

work of Kadmon and Sompolinsky [23] extending our previous

work [13]. They studied a network with block structure, where

the distribution of elements in each block has a nonzero

mean such that, if appropriately defined, the elements in

each column can have the same sign. They also considered

non-negative transfer functions in addition to the hyperbolic

tangent. Their analysis showed that in addition to the stable
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fixed point and chaotic regimes, there is an additional regime of

saturated firing rates. For the general case it was not possible to

determine whether the transition to chaotic or saturated regime

is seen first upon variation of the connectivity parameters, or

what the dynamics look like if conditions for both instabilities

hold (i.e., what the saturated and chaotic dynamics look like).

We anticipate that for cases where the first transition is to the

chaotic regime, the analysis presented here for synaptic weight

distributions with mean 0 will apply (with the appropriate

modifications similar to those in [23]) when the mean is

nonzero.

Here we also treat networks with separate excitatory and

inhibitory populations (Sec. V), by deriving the support of

the bulk spectrum and outliers of connectivity matrices with

heterogeneous degree distributions.

II. DERIVATION OF THE CRITICAL POINT

A. Finite number of partitions

We begin by recalling our recent results for a function g that

has block structure. We defined a D×D matrix with elements

gcd and partitioned the indices 1, . . . ,N into D groups, where

the cth partition has a fraction αc neurons. The synaptic gain

function was then defined by g(zi,zj ) = gcicj
, where ci is the

partition index of the ith neuron (c = 1, . . . ,D).

Defining nd = N
∑d

c=1 αc allows us to write formally ci =
{c| i

N
∈ (

nc−1

N
, nc

N
]}. With these definitions, we rewrite Eq. (4):

ẋi = −xi +
D
∑

d=1

gcid

nd
∑

j=nd−1+1

J 0
ijφj (t). (6)

In [13] we used the dynamic mean field approach [17,24,25]

to study the network behavior in the N → ∞ limit. Averaging

Eq. (6) over the ensemble from which J is drawn implies that

neurons that belong to the same group are statistically identical.

Thus, the behavior of the full network can be summarized by

D representative neurons ξd (t) and their inputs ηd (t), provided

that (a) they satisfy

ξ̇d (t) = −ξd (t) + ηd (t), (7)

and (b) that ηd (t) is drawn from a Gaussian distribution with

moments satisfying

〈ηd (t)〉 = 0, (8)

〈ηc(t)ηd (t + τ )〉 = δcd

D
∑

b=1

αbg
2
cbCb(τ ). (9)

Here 〈·〉 denotes averages over i = nc−1 + 1, . . . ,nc and

k = nd−1 + 1, . . . ,nd in addition to average over realizations

of J . The average firing rate correlation vector is denoted by

C(τ ). Its components using the mean field variables are

Cd (τ ) = 〈φ[ξd (t)]φ[ξd (t + τ )]〉. (10)

The cross-covariance matrix 〈ηc(t)ηd (t + τ )〉 is diagonal so

we define the vector H (τ ) to be the diagonal. Now we can

rewrite Eq. (9) as

H (τ ) = MC(τ ), (11)

where M ∈ R
D×D
+ is a constant matrix reflecting the network

connectivity structure: Mcd = αdg
2
cd .

A trivial solution to this equation is H (τ ) = C(τ ) = 0

which corresponds to the silent network state: xi(t) = 0. Recall

that in the network with a Girko matrix as its connectivity

matrix (D = 1), the matrix M = g2 is a scalar and Eq. (11)

reduces to H (τ ) = g2C(τ ). In this case the silent solution is

stable only when g < 1. For g > 1 the autocorrelations of η are

nonzero which leads to chaotic dynamics in the N dimensional

system [17].

When D > 1, Eq. (11) can be projected on the eigenvectors

of M leading to D consistency conditions, each equivalent to

the single group case. Each projection has an effective scalar

given by the eigenvalue in place of g2 in the D = 1 case.

Hence, the trivial solution will be stable if all eigenvalues of

M have real part < 1. This is guaranteed if �1, the largest

eigenvalue of M , is < 1. If �1 > 1 the projection of Eq. (11)

on the leading eigenvector of M gives a scalar self-consistency

equation analogous to the D = 1 case for which the trivial

solution is unstable. As we know from the analysis of the

D = 1 case, this leads to chaotic dynamics in the full network.

Therefore �1 = 1 is the critical point of the D > 1 network.

Furthermore, the fact that in the D = 1 case the presence of

the destabilized fixed point at x = 0 corresponds to a finite

mass of the spectral density of J with real part >1 [17,26]

allowed us to read the radius of the support of the connectivity

matrix with D > 1 and identify it as r =
√

�1 [13].

B. Continuous case

The vector dynamic mean field theory we developed in [13]

relies on having an infinite number of neurons in each partition

with the same statistics. The natural choice is therefore to have

the size of each group of neurons be linear in the system size:

Nc = αcN .

This scaling imposes two limitations for comparing the

results to the dynamics of more realistic networks. First, it

requires knowledge of the cell-type identity of each neuron in

the recording, which often is not available. Second, it limits

the analysis of the dynamics to quantities that are averaged

over neurons that belong to the same cell type.

To lift the requirement of block structured variances [i.e.,

now g = g(zi,zj )], we can do the following. Let K(N ) ∈ N

be a weakly monotonic function of N such that

lim
N→∞

K(N )

N
= 0, lim

N→∞

Nβ

K(N )
= 0. (12)

Recall that we allow the Lipschitz constant of g to grow as

Nβ with 1 > β � 0, implying that limN→∞ K(N ) = ∞. A

natural choice is K(N ) = N β̃ with β̃ = 1 − β, but as long as

1 > β̃ > β the specific scaling behavior will not matter in our

analysis. For convenience we will suppress the N dependence

when possible.

Let μ = 1, . . . ,K and let

μi =
{

μ

∣

∣

∣

∣

i

N
∈
(

μ − 1

K
,
μ

K

]}

. (13)
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Furthermore, define g̃ ∈ R
N×N
+ with elements

g̃ij = g

(

μi − 1
2

K
,
μj − 1

2

K

)

. (14)

In other words, g̃ is an N×N matrix with K2 equally sized

square blocks. The value of elements in each block is the

value of the function g in the middle of that block. These

definitions allow us to bridge the gap between the block and

the continuous cases. Indeed, consider the random connectivity

matrix with elements J̃ij = g̃ijJ
0
ij and the network that has J̃

as its connectivity.

First, since N/K → ∞ as N → ∞, the number of neurons

in each group goes to infinity, and we may use the vector

dynamic mean field theory as before, but in a K dimensional

space [rather than D which was O(1)]. The critical point is

now given in terms of the largest eigenvalue of an N × N

matrix M̃ with elements

M̃ij =
1

N
g2

(

μi − 1
2

K
,
μj − 1

2

K

)

, (15)

where rank{M̃} � K .

Second, recall that the function g is assumed to be smooth

outside of a set with measure zero S0. These properties will

allow us to show (see Appendix A) that as N → ∞ we have

g̃ij → g(zi,zj ), M̃ij →
[

G
(2)
N

]

ij
, (16)

meaning that by studying the system with connectivity

structure g̃ in the limit N → ∞ we are in fact obtaining results

for the generalized connectivity matrix with a smooth synaptic

gain function g.

C. Circular symmetry of spectrum

In [11] we used random matrix theory techniques to derive,

for the case of block-structured J , an implicit equation that the

full spectral density of J satisfies. The circular symmetry of

the spectrum for that case is obvious because the equations

[see Eq. (3.6) in [11]] depend on the complex variable z

only through |z|2. Similar implicit equations, with integrals

instead of sums, can be written for the continuous case.

Rigorous mathematical analysis of the spectral density implied

by such equations is beyond the scope of this paper and will

be presented elsewhere. Nevertheless, the integral equations

still depend on |z|2, supporting the circular symmetry of the

spectrum.

III. DYNAMICS ABOVE THE CRITICAL POINT

A. Finite number of partitions

To study the spontaneous dynamics above the critical

point we recall again the analogous result for a matrix with

block structure. The D dimensional average autocorrelation

vectors C(τ ),�(τ ) (see definition below) are restricted to a D⋆

dimensional subspace, where D⋆ is the number of eigenvalues

of M with real part >1 (i.e., the algebraic multiplicity of these

eigenvalues). This result is obtained by projecting Eq. (11) on

the right eigenvectors of M [13].

The definitions of the d = 1, . . . ,D component of these

vectors are

�d (τ ) =
1

Nαd

nd
∑

i=nd−1+1

〈xi(t)xi(t + τ )〉, (17)

Cd (τ ) =
1

Nαd

nd
∑

i=nd−1+1

〈φi(t)φi(t + τ )〉, (18)

and the D⋆ dimensional subspace is

UM = span
{

uR
1 , . . . ,uR

D⋆

}

, (19)

where uR
d are the right eigenvectors of M in descending order

of the real part of their corresponding eigenvalue (see examples

in Fig. 1). An equivalent statement is that, independent of the

lag τ , projections of the vectors C(τ ),�(τ ) on any vector in

the orthogonal complement subspace U⊥
M are approximately

0. Note that for asymmetric (but diagonalizable) M, U⊥
M is

spanned by the left rather than the right eigenvectors of M:

U⊥
M = span

{

uL
D⋆+1, . . . ,u

L
D

}

. (20)

B. Autocorrelation modes in the generalized model

We can repeat the analysis of [13] for a network with

connectivity J̃ = g̃ijJ
0
ij that has K2 blocks, and for each

N,K(N ) obtain the subspace UM̃ that the K dimensional

autocorrelation vectors C̃(τ ),�̃(τ ) are restricted to. These

vectors have components

�̃μ(τ ) =
1

K

N/Kμ
∑

i=(N/K)(μ−1)+1

〈xi(t)xi(t + τ )〉, (21)

C̃μ(τ ) =
1

K

N/Kμ
∑

i=(N/K)(μ−1)+1

〈φi(t)φi(t + τ )〉. (22)

Now when we take the limit N → ∞ the dimensionality

of the autocorrelation vectors C̃(τ ),�̃(τ ) becomes infinite as

well, but the subspace UM̃ may be of finite dimension K⋆,

where K⋆ is the algebraic multiplicity of eigenvalues of M̃

with real part greater than 1 (see Sec. IV for an example).

We have shown that for g that satisfies the smoothness

conditions, studying the network with connectivity Jij =
g(zi,zj )J 0

ij is equivalent to studying the network with con-

nectivity J̃ in the limit N → ∞. Therefore, in that limit,

the individual neuron autocorrelation functions Ci(τ ),�i(τ )

[Eq. (5)] are restricted to the subspace spanned by the right

eigenvectors of M̃ → G
(2)
N corresponding to eigenvalues with

real part >1.

This in fact is equivalent to, given the network structure

g, predicting analytically the leading principal components

in the N dimensional space of individual neuron autocorre-

lation functions (see Fig. 2). Note that traditionally principal

component analysis is performed in the N dimensional space

of neuron firing rates rather than autocorrelation functions.

Numerical analysis performed in [27] suggests that the sys-

tem’s trajectories, when considered in the space spanned by the

vectors x or φ(x) (individual neuron activations or firing rates),

occupy a space of dimension that is extensive in the system
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FIG. 1. Eigenspaces of two example networks—one with block structured connectivity (top) and another with continuous gain modulation

(bottom). (a) The synaptic gain matrix gij . (b) The spectrum of the random connectivity matrix J in the complex plane. The spectrum is

supported by a disk with radius r =
√

�1 indicated in red. (c) The square root of the largest eigenvalues of G
(2)
N . When these are greater

than 1, the corresponding eigenvectors [shown in (d)] are active autocorrelation modes. For the continuous function we chose the circulant

parametrization (see Sec. IV A) with g0 = 0.3,g1 = 3.0 and γ = 2.0. For the block structured connectivity, g was chosen such that the first

five eigenvalues match exactly those of the continuous network.

size N . However, when considered in the space of individual

neuron autocorrelation functions, the dimension of trajectories

is intensive in N and usually finite. In the subspace we

derive here the information about the relative phases between

neurons is lost, but the amplitude and frequency information

is preserved. Section VII includes further discussion of the

consequences of our predictions and how they may be applied.

C. Finite N behavior

For a finite system it is evident from numerical simulations

that the N dimensional vector of autocorrelation functions

has nonzero projections on inactive modes—eigenvectors of

G
(2)
N with corresponding eigenvalue which is <1 (see Fig. 2).

Here we study the magnitude of this effect, and specifically its

dependence on N and on the model’s structure function g. For

simplicity, we will study the projections of the autocorrelation

vector C(τ ) at lag τ = 0. Let

σ 2
C(g,N ) =

〈‖C⊤(0)U⊥(G
(2)
N

)

‖2〉
〈‖C(0)‖2〉

, (23)

where U⊥(G
(2)
N ) is an N×(N − K⋆) matrix with columns equal

to orthogonalized eigenvectors of G
(2)
N with corresponding

eigenvalue less than 1 [see Eqs. (19) and (20)]. Here 〈·〉 denotes

averaging over an ensemble of connectivity matrices (with the

same structure g and same size N ).

Consider the homogeneous network [i.e., constant

g(zi,zj ) = g0 > 1]. Now U⊥(G
(2)
N ) contains all the vectors in

R
N perpendicular to the dc mode 1√

N
[1, . . . ,1] and the squared

norm ‖C(0)‖2 = O(N ) because on average all neurons have

the same autocorrelation function [Eq. (10)]. Thus, σ 2
C(g0,N )

is simply the variance over the neural population of the

individual neuron autocorrelation functions at lag τ = 0.

We can now use the mean-field approximation to determine

the N dependence of σ 2
C(g0,N ). For N ≫ 1, the elements of

the vector C(0) follow a scaled χ2 distribution,

Ci(0) = N−1q
(

g2
0

)

yN
i , yN

i ∼ χ2(N ), (24)

where q(g0) ∼ O(g0) ∼ O(1) and χ2(N ) is the standard

χ2 distribution with N degrees of freedom. Thus, in this limit,

〈Ci(0)〉 = q
(

g2
0

)

,

〈Ci(0)Cj (0)〉 − 〈Ci(0)〉〈Cj (0)〉 = 2δijN
−1q2

(

g2
0

)

≈ δij/N.

(25)

The autocorrelation function is in general a single neuron

property. Therefore, their variation about the mean is uncor-

related across neurons independent of the network’s structure:

〈Ci(0)Cj (0)〉 − 〈Ci(0)〉〈Cj (0)〉 ∝ δij . Thus, we can use the

notation 〈(δCi(0))2〉 = 〈Ci(0)Ci(0)〉 − 〈Ci(0)〉〈Ci(0)〉.
In the case with D partitions the vectors that span UG(2)

are no longer parallel to the dc mode. We assume that the

projections on U⊥
G(2) can still be estimated using the χ2

distribution, but here with αcN degrees of freedom for the

c partition [instead of N , see Eq. (24)]. Thus, for a network

with D partitions,

〈Ci(0)〉 = qci
(M),

〈(δCi(0))2〉 = 2q2
ci

(M)(αci
N )−1 ≈ D/N. (26)
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FIG. 2. Low-dimensional structure of network dynamics. Traces of the firing rates φ[xi(t)] (a) and autocorrelations Ci(τ ) (b) of eight

example neurons chosen at random from the network with continuous gain modulation (shown in the bottom row of Fig. 1). (c) The sum of

squared projections of the vector Ci(τ ) on the vectors spanning UG(2) (the active modes, solid lines) or U⊥
G(2) (the inactive modes, dashed lines).

The dimension of the subspace UG(2) is K⋆ = 1 for the network with g = const and K⋆ = 3 for the block and continuous cases (orange and

red, respectively), much smaller than N − K⋆ ≈ N , the dimension of the orthogonal complement space U⊥
G(2) . (d) Our analytically derived

subspace accounts for almost 100 percent of the variance in the autocorrelation vector for |τ | � 10 (in units of the synaptic time constant).

(e) Reducing the dimensionality of the dynamics via principal component analysis on φ(x) leads to vectors (inset) that account for a much

smaller portion of the variance (when using same dimension K⋆ for the subspace), and lack structure that could be related to the connectivity.

(f) Summary data from 50 simulated networks per parameter set (N , structure type) at τ = 0. As N grows the leak into U⊥
G(2) diminishes if one

reduces the space of the Ci(τ ) data while the fraction of variance explained becomes smaller when using PCA on the φ[xi(t)] data, a signature

of the extensiveness of the dimension of the chaotic attractor.

Finally, for K(N ) partitions,

〈Ci(0)〉 = qi

(

g
(2)
N

)

,

〈(δCi(0))2〉 = 2q2
i

(

G
(2)
N

)

(K/N ) ≈ K[g]/N. (27)

At this stage, Eq. (27) remains ambiguous because the function

K(N ) is not a property of the neural network model. Rather, it

is a construction we use to show that in the limit N → ∞ we

are able to characterize the dynamics using the vector dynamic

mean field approach. Therefore, for finite N we now wish to

estimate an appropriate value of K = K[g].

This can be done by noting that the network with block

structured connectivity is a special case of the one with a

continuous structure function. For that special case we know

that K[g] = D. Since g is smooth, for sufficiently large N ,

we can assume that in each block g is linear in both variables

zi and zj :

g(zi,zj ) ≈ g̃ij + g̃
(1,0)
N (μi,μj )

(

zi −
μi − 1

2

K

)

+g̃
(0,1)
N (μi,μj )

(

zj −
μj − 1

2

K

)

. (28)

Here g̃
(1,0)
N (μi,μj ) is the first derivative of g with respect to

the first variable, evaluated in the middle of the μi,μj block.

The only expression for K[g] that depends on first deriva-

tives of g and agrees with the homogeneous and block cases

is

K[g] ≈ 1 +
∫∫

[|g(1,0)(x,y)| + |g(0,1)(x,y)|]dxdy

≈ 1 +
∫∫

‖∇g‖dxdy. (29)
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We are unable to test this prediction quantitatively, because

we do not know the dependence of the function q on the

structure g. We are able to show however that the dependence

on N is the same as for the block models, which is confirmed

by numerical simulations [compare solid purple, orange and

red lines in Fig. 2(f)]. In the cases where g depends on N , the

value of K[g] will also depend on N , such that the scaling of

the “leak” may no longer be ∝ N−1.

IV. AN EXAMPLE WHERE g IS CIRCULANT

When the matrix g(zi,zj ) is circulant such that g(zi,zj ) =
g(zij ) with

zij = min{|zi − zj |,1 − |zi − zj |}, (30)

the eigenvalues and eigenvectors of G
(2)
N are given in closed

form by integrals of the function g2(zij ) and the Fourier

modes with increasing frequency. In particular, the largest

eigenvalue �1 = 2
∫ 1/2

0
g2(z)dz corresponds to the zero fre-

quency eigenvector ∝ [1, . . . ,1]. To show this, consider the

k + 1 eigenvalue of the circulant matrix G
(2)
N :

�k+1 =
1

N

N
∑

j=1

exp

(

2πijk

N

)

g2(z1,zj ). (31)

So in the limit N → ∞,

�k+1 = lim
N→∞

2

N

N/2
∑

j=1

exp(2πikz1j )g2(z1j )

= 2

∫ 1/2

0

exp(2πikz)g2(z)dz, (32)

as desired.

A. A ring network

As an example we study a network with ring structure that

will be defined by g(zi,zj ) = g0 + g1(1 − 2zij )γ , such that

neurons that are closer are more strongly connected.

This definition leads to the following form for the critical

coordinate along which the network undergoes a transition to

chaotic behavior:

�1 = g2
0 +

2g0g1

γ + 1
+

g2
1

2γ + 1
. (33)

Interestingly, as g1 increases continuously, additional discrete

modes with increasing frequency over the network’s spatial

coordinate become active by crossing the critical point �k = 1.

When modes with sufficiently high spatial frequency have been

introduced, nearby neurons may have distinct firing properties.

B. A toroidal network

In contrast to the ring network discussed above, the

connectivity in real networks often depends on multiple

factors. These could be the spatial coordinates of the cell body

or the location in a functional space (e.g., the frequency that

each particular neuron is sensitive to). Therefore we would

like to consider a network where the function g depends on

the distance between neurons embedded in a multidimensional

space.

This problem was recently addressed by Muir and Mrsic-

Flogel [14] by studying the spectrum of a specific type

of Euclidean random matrix. In their model, neurons were

randomly and uniformly distributed in a space of arbitrary

dimension, and the connectivity was a deterministic function

of their distance. While their approach resolves the issue of

the spectral properties of the random matrix when connectivity

depends on distance in more than one dimension, the dynamics

these matrices imply remain unknown.

To study the spectrum and the dynamics jointly, we define

a network where neurons’ positions form a square K×K grid

(with K =
√

N ) on the [0,1] × [0,1] torus [see Fig. 3(a)]:

θ1
i =

⌊i/K⌋
K

, θ2
i =

imodK

K
. (34)

The positions of the neurons on the torus are schematized in

Fig. 3(a).

An analogous parametrization for g to the one we used in

the ring example which respects the toroidal geometry reads

gij = g0 + g1[cos(2πzij ) + 1][cos(2π
√

Nzij ) + 1]. (35)

Note that now g depends on N , but it is bounded and its

Lipschitz constant scales as
√

N , so it satisfies the smoothness

conditions.

Figure 3(b) shows the spectrum of G(2) and the cor-

responding eigenvectors, plotted on a torus. Because there

are nonuniform modes that are active (2 through 5), then

each neuron has a different participation in the vector of

autocorrelation functions. In Figs. 3(c) and 3(d) we show for

a network with a range of N values that indeed the vector of

autocorrelation functions is restricted to the predicted subspace

in contrast to the firing rate vector.

The gain function analyzed here depends on a Euclidean

distance on the torus. Other metrics, for example a city-block

norm, can be treated similarly.

Overall these results provide a mechanism whereby con-

tinuous and non-fine-tuned connectivity that depends on a

single or multiple factors can lead to a few active dynamic

modes in the network. Importantly, the modes maintained by

the network inherit their structure from the deterministic part

of the connectivity.

V. MATRICES WITH HETEROGENEOUS

DEGREE DISTRIBUTIONS

Here we will use our general result to compute the spectrum

of a random connectivity matrix with specified in- and out-

degree distributions. Realistic connectivity matrices found in

many biological systems have degree distributions which are

far from the binomial distribution that would be expected

for standard Erdős-Rényi networks [28]. Specifically, they

often exhibit correlation between the in- and out-degrees,

clustering, community structures and possibly heavy-tailed

degree distributions [5,29]. Some results exist for symmetric

adjacency matrices with broad degree distributions [30,31] that

are useful to studying systems beyond neuroscience.

We consider a connectivity matrix appropriate for a neural

network model. Since each element of this matrix will have
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(a)

(b)

(c) (d)

FIG. 3. Results for a toroidal network. (a) A grid strategy with K =
√

N for tiling the [0,1] × [0,1] torus with N neurons (left) and the

resulting deterministic gain matrix with elements gij for three values of N as defined in Eq. (35) (right). Unlike the ring network, here g

depends on N , and its derivative is unbounded so as N increases the gain function “folds.” The parameters of the connectivity matrix are

g0 = 0.7, g1 = 0.8. (b) The 25 nonzero eigenvalues of G
(2)
N for N = 1600 and the eigenvectors corresponding to eigenvalues that are greater

than 1 plotted on a torus with coordinates (θ1
i ,θ 2

i ). (c) The sum of squared projections of the vector Ci(τ ) on the vectors spanning UG(2) (the

active modes, red line) or U⊥
G(2) (the inactive modes, black line). Shades indicate the standard deviation computed from 50 realizations. (d)

Comparison of the variance explained at τ = 0 by our predicted subspace (solid line) and by performing PCA on φ(x) (dashed line). Error bars

represent 95% confidence intervals. Inset: the subspace we derived accounts for a large portion of the variance for time lags |τ | � 10 (in units

of the synaptic time constant).

a nonzero mean, our current theory cannot make statements

about the dynamics. Nevertheless the spectrum of the con-

nectivity matrix is important on its own as a step towards

understanding the behavior of random networks with general

and possibly correlated degree distributions.

Consider a network with NE excitatory and NI inhibitory

neurons (N = NE + NI ). The connectivity is defined through

the in- and out-degree sequences, N dimensional vectors where

the ith element represents the number of incoming or outgoing

connections to or from neuron i. Each inhibitory neuron has

incoming or outgoing connections with probability p0 to or

from every other neuron in the network. Within the excitatory

subnetwork, degree distributions are heterogeneous. Specif-

ically, kin,kout are the average excitatory in- and out-degree

sequences that are drawn from a joint degree distribution that

could be correlated. We assume that
∑NE

i=1 kin
i =

∑NE

i=1 kout
i =

NE k̄, where k̄ is the mean connectivity, and that the marginals

of the degree distribution are equal. Define x,y to be the NE

dimensional vectors x = kin/
√

NE k̄ and y = kout/
√

NE k̄.

The matrix P defines the probability of connections given

the fixed normalized degree sequences and p0:

Pij =
{

xiyj , 1 � i,j � NE

p0, otherwise
. (36)

The random adjacency matrix is then Aij ∼ Bernoulli(Pij ).

Note that because the adjacency matrix is random, kin and kout

are the average in- and out-degree sequences.

The connectivity matrix is then

Jij = AijWij (37)

with

Wij =
{

−W0, j > NE

1, otherwise
, (38)

where W0 is the ratio of the synaptic weight of inhibitory to

excitatory synapses. It should be noted that the connections to

and from inhibitory neurons are much less well characterized

empirically, and the evidence for specific structure in these

connections is weaker than for excitatory neurons. For this

reason, outside of the excitatory subnetwork connectivity is

assumed to be homogeneous.

To leading order, the distribution of eigenvalues of J will

depend only on the mean and variance of its elements, which

are summarized in the deterministic matrices Q (means) and

G
(2)
N (variances) with elements

Qij = PijWij , (39)
[

G
(2)
N

]

ij
= Pij (1 − Pij )W 2

ij . (40)

We will show that the rank of the deterministic matrix Q is

�3 (generically for large N and non-fine-tuned parameters

rank{Q} = 3). In [10], Tao considered a case similar to

ours, studying the spectrum of the sum of a random matrix

with independent and identically distributed elements and a

low-rank perturbation. In Sec. II of that paper, it is shown

that because the resolvent, (J 0 − z)−1 (where z is a complex

number), is close to − 1
z
I outside the support of the spectrum,

outlying eigenvalues fluctuate around the nonzero eigenvalues

of the low-rank perturbation. Adapting the arguments of [32]

in Sec. V, as done in [11], it can be shown the resolvent

of random matrices with independent and nonidentically

distributed entries is also close to − 1
z
I outside the support of

the bulk spectrum. Hence, outlying eigenvalues will fluctuate

around the deterministic low-rank eigenvalues.

Combining these, we expect that if the nonzero eigenvalues

of Q are outside of the bulk that originates from the random

part of the matrix, the spectrum of the matrix J (with nonzero

means) will be approximately a composition of the bulk
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FIG. 4. Spectrum of connectivity matrices with heterogeneous,

correlated joint degree distribution. The network parameters were

chosen to be κ=0.7, θ=28.57, NE=1000, NI = 250, p0 = 0.05,

W0 = 5, where κ and θ are the form and scale parameters respectively

of the Ŵ distribution from which the in- and out-degree sequences

are randomly drawn. The average correlation ρ between the in- and

out-degree sequences was varied between 0 and 1. For the values

ρ = 0.2 (left) and ρ = 0.8 (right) we drew 25 degree sequences

and based on them drew the connectivity matrix according to the

prescription outlined in Sec. V. The eigenvalues of each matrix were

computed numerically and are shown in black. For each value of ρ

we computed the average functions 〈T 〉,〈S〉, etc., and the roots of the

characteristic polynomials A(�) and B(λ) (see Appendixes B and C

for derivation). The predictions for the support of the bulk (solid red

line) and the outliers (orange points and dotted line) are in agreement

with the numerical calculation. Inset: as a function of ρ, there is a

positive outlier that exits the disk to the right.

and outliers that can be computed separately and that the

approximation will become exact as N → ∞. This is verified

through numerical calculations (Fig. 4).

Viewing the normalized degree sequences x,y as determin-

istic variables we define

U =
NE
∑

i=1

x2
i =

NE
∑

i=1

y2
i ,

S =
NE
∑

i=1

xi =
NE
∑

i=1

yi,

T =
NE
∑

i=1

xiyi,

V =
NE
∑

i=1

(

xiy
2
i + x2

i yi

)

,

Z =
NE
∑

i=1

x2
i y

2
i ,

R =

(

NE
∑

i=1

xiy
2
i

)(

NE
∑

i=1

x2
i yi

)

. (41)

Given the parameters W0,p0,NE,NI , we show in

Appendix B that rank{G(2)
N } � 4 (generically for large N and

non-fine-tuned parameters rank{G(2)
N } = 4) and its character-

istic polynomial is A(�) =
∑N

k=0 (−1)kak�
N−k with

a0 = 1,

a1 = T − Z + NIW
2
0 p0(1 − p0),

a2 = R − ZT +NIW
2
0 p0(1 − p0)[T − Z − p0(1 − p0)NE],

a3 = NIW
2
0 p0(1 − p0){R − ZT + p0(1 − p0)

× [S2 − U2 − NE(T − Z)]},
a4 = NIW

2
0 p2

0(1 − p0)2[NE(ZT − R)

−ZS2 − U2T + SUV], (42)

and ak = 0 for k > 4. Therefore, using our results, the radius

of the bulk spectrum of J is equal to the square root of the

largest solution to A(�) = 0.

Furthermore we show that the nonzero eigenvalues of

Q are equal to the roots of the polynomial B(λ) =
∑N

k=0 (−1)kbkλ
N−k , with

b0 = 1,

b1 = T − NIW0p0,

b2 = NIW0p0[NEp0 − T ],

b3 = NIW0p
2
0

[

NET − S2
]

, (43)

and bk = 0 for k > 3, such that the outlying eigenvalues of J

are approximated by the roots of B(λ) that lie outside of the

bulk.

If the degree sequences are not specified, but only the

joint in- and out-degree distribution they are drawn from, the

random matrix J will be constructed in two steps: first kin and

kout are drawn from their joint in- and out-degree distribution,

and then the elements of J are drawn using the prescription

outlined above. In such cases, one can in principle compute

the averages 〈T 〉,〈S〉, etc., in terms of the moments of the

joint degree distribution, and substitute these averages into the

formulas we give assuming the degree sequences are fixed.

We have carried out that calculation (Appendix C) for Ŵ

degree distributions with form parameter κ , scale parameter θ ,

and arbitrary correlation ρ of the in- and out-degree sequences

(see Fig. 4). We find that, for fixed marginals, the radius of the

bulk spectrum depends extremely weakly on the correlation

of the in- and out-degree sequences (see solid red line in

inset to Fig. 4). The matrix Q however has a real, positive

eigenvalue that for typical examples increases monotonically

with the correlation, such that for some value it exits the bulk

to the right (see Fig. 4). Work by Roxin [18], Schmeltzer

et al. [19], and unpublished work by Landau and Sompolinsky

[33] has shown that the broadness and correlation of the

joint degree distribution can lead to qualitative changes in

the behavior of a spiking network. Further work is required to

investigate whether and why these changes can be explained

by the spectrum of the connectivity matrix derived here. We

anticipate that the outlier exiting the spectrum may be related

to the transition to a saturated state observed in networks with

block structure in [23].

022302-9



ALJADEFF, RENFREW, VEGUÉ, AND SHARPEE PHYSICAL REVIEW E 93, 022302 (2016)

VI. AN EXAMPLE FROM ECOLOGY

Random matrices have been used to study a wide vari-

ety of complex systems outside of neuroscience. Examples

include metabolic networks, gene-regulatory networks, and

communication networks. Here we analyze matrices with

triangular structure that arise in ecology of food webs. The

past few years have seen a resurgence of interest in the use

of methods from random matrix theory to study the stability

of ecosystems [34–36]. While the original work by R. May

assumed a random unstructured connectivity pattern between

species [37], experimental data shows marked departures

from random connectivity [38]. This includes hierarchical

organization within ecosystems where larger species have

asymmetric effect on smaller species, larger variance in the

number of partners for a given species [39], and fewer cycles

involving three or more interacting species than would be

expected from an Erdős-Rényi graph [40]. A popular model

for food web structure is the cascade model [41], where

species are rank ordered, and each species can exclusively prey

upon lower-ranked species. The differential effects between

predators and prey in the cascade model can be described

using connectivity matrices with different statistics for entries

above and below the diagonal [42]:

Jij = μ(zi,zj )/
√

N + g(zi,zj )J 0
ij (44)

with

μ(zi,zj ) = μa�(zi − zj ) − μb�(zj − zi), (45)

g(zi,zj ) = ga�(zi − zj ) + gb�(zj − zi), (46)

where � is the Heaviside step function. We use the convention

�(0) = 0. Here, J describes the interactions between different

species in the ecosystem. For μa,μb > 0 and sufficiently larger

than ga,gb, the entries above (below) the diagonal are positive

(negative), so the matrix describes a perfectly hierarchical food

web, where the top-ranked species consumes all the other

species, the second species consumes all the species but the

first, and so on.

We will focus on the random part of the matrix (i.e., we set

μa = μb = 0). The spectrum of the sum of the deterministic

and random parts remains a problem for future study. Note

that since the deterministic part has full rank, one cannot apply

simple perturbation methods.

According to our analysis, the support of the spectrum of

J is a disk with radius
√

�1,�1 = limN→∞ max λ[G
(2)
N ], and

G
(2)
N (zi,zj ) = N−1

[

g2
a�(zi − zj ) + g2

b�(zj − zi)
]

. (47)

Following the derivation in [42] we will show that

�1 = g2
a−g2

b

2ln(ga/gb)
.

The characteristic polynomial DN (λ) = det |Iλ − G
(2)
N | is

simplified by subtracting the i + 1 column from the ith column

for i = 1, . . . ,N − 1 giving

DN (λ) = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + a 0 0 −a

−(λ + b)
. . . 0

...

0
. . . λ + a −a

0 0 −(λ + b) λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (48)

where we have defined a = g2
a/N and b = g2

b/N . This sim-

plifies to the recursion relation DN (λ) = (λ + a)DN−1(λ) −
a(λ + b)N−1. Taking into account that D2(λ) = λ2 − ab, this

recursion relation can be solved, giving

DN (λ) =
1

a − b
[a(λ + b)N − b(λ + a)N ]. (49)

Setting the characteristic polynomial DN (λ) to 0 leads to the

equation

b = a

(

b + λ

a + λ

)N

, (50)

which has multiple roots,

λk = a

(

b
a

)1/N
e2πik/N − b

a

1 −
(

b
a

)1/N
e2πik/N

, k = 1, . . . ,N. (51)

We are interested in the largest among the N roots, which is

real and positive. Taking into account the dependence of a and

b on N , we find that

�1 = lim
N→∞

max
k

[

a

(

b
a

)1/N
e2πik/N − b

a

1 −
(

b
a

)1/N
e2πik/N

]

=
g2

a − g2
b

ln
(

g2
a

g2
b

) , (52)

as desired.

Interestingly, for all values of ga,gb the spectral radius of J

is smaller than the radius of the network if the predator-prey

structure did not exist. The latter is equal to

√

(g2
a + g2

b)/2.

This suggests that the hierarchical structure of the interaction

network serves to stabilize the ecosystem regardless of how

dominant the predators are over the prey.

Note however that in this model there are no correlations.

In [42], it was shown numerically that correlations (i.e.,

the expectation value of J 0
ijJ

0
ji) can dramatically change the

stability of the network, compared with one that has no

correlations.

VII. DISCUSSION AND CONCLUSIONS

We studied jointly the spectrum of a random matrix model

and the dynamics of the neural network model it implies. We

found that, as a function of the deterministic structure of the

network (given by g), the network becomes spontaneously

active at a critical point.

Identifying a space where the dynamics of a neural

network can be described efficiently and robustly is one of

the challenges of modern neuroscience [43]. In our model,

above the critical point, the deterministic dynamics of the

entire network are well approximated by a potentially low-

dimensional probability distribution, with dimension equal to

the number of eigenvalues of a deterministic matrix that have

a real part greater than 1.

The two limitations of our previous studies [11,13] for

interpreting multiunit recordings are (1) that the cell-type

identity of each neuron in the network has to be known and (2)

that predictions are averaged over all neurons of a specific type.

Here both limitations are remedied. First, while some

information about the connectivity structure is still required,

this could be in the form of global spatial symmetries (“rules”)
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present in the network, such as the connectivity rule we used

in the ring model. Second, our analysis provides a prediction

for single neuron quantities, namely the participation of every

neuron in the network in the global active dynamic modes.

Existence of discrete network modules with no apparent

fine-tuned connectivity has been shown to exist in networks

of grid cells in mammalian medial entorhinal cortex [44].

These cells fire when the animal’s position is on the vertices

of a hexagonal lattice, and are thought to be important for

spatial navigation. Interestingly, when characterizing the firing

properties of many such cells in a single animal one finds that

the the lattice spacing of all cells belongs (approximately) to a

discrete set that forms a geometric series [44]. Much work has

been devoted to trying to understand how such a code could

be used efficiently to represent the animal’s location (see for

example [45,46]) and how such a code could be generated [47].

However, we are not aware of a model that explains how

multiple modules (subnetworks with distinct grid spacing)

could be generated without fine-tuned connectivity that is not

observed experimentally. In our model, continuous changes to

a connectivity parameter can introduce additional discrete and

spatially periodic modes into the network represented by finer

and finer lattices. We are not arguing that the random network

we are studying here could serve as a model of grid-cell

networks, as there are many missing details that cannot be ac-

counted for by our model. Nevertheless our analysis uncovers

a mechanism by which a low-dimensional, spatially structured

dynamics could arise as a result of random connectivity.

More broadly, our results offer insight into the question

of what is the appropriate random matrix model for studying

networks with structured connectivity. We focus our discussion

on networks with increased probability of bidirectional con-

nections (see for example [5]). Most empirical datasets consist

of connectivity measurements within a subnetwork of a few

neurons, and thus cannot distinguish between the following

two processes giving rise to the observed over-representation

of bidirectional connections [48]. One possibility is that

microscopic (e.g., molecular) signaling is responsible for an

increased probability that neuron i is connected to j , given

that j is connected to i. An alternative possibility is that the

in- and out-degree sequences are correlated macroscopically,

so that if neuron j is connected to i the in and out degrees of

i will be large with increased probability, so the chance that

i is connected to j is larger than the average connectivity in

the network. These two possibilities are related to different

random matrix models that imply markedly different network

dynamics: the first to an elliptic model where the elements

Jij and Jji are correlated [7], and the second to a model with

heterogeneous and correlated degree distributions, such as the

one studied here that has a circularly symmetric spectrum.
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doctoral grant by Fundació “la Caixa” and a travel grant by
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APPENDIX A: THE LIMIT K,N → ∞

Here we will show that the difference between the piecewise

estimate g̃ and the continuous synaptic gain function g goes

to 0 as N → ∞. We assumed that the unit square can be

tiled by square subsets of area s2
0 > 0 where g is bounded,

differentiable, and its first derivative is bounded in each subset.

Note that the Lipschitz constant of g can depend on N , but s0

cannot.

For N,K(N ) ∈ N, recall our definitions for g̃ and μi

[Eqs. (13) and (14)] and define kij = (K−1(μi − 1),K−1μi] ×
(K−1(μj − 1),K−1μj ]. Also recall our assumption that each

point is either inside a square with side s0 within which there

are no discontinuities or on the border of such a subset. Thus,

for K > s−1
0 we can assume that every constant region of g̃ is

contained within a single square subset.

We would like to show that for all i,j

lim
N→∞

|g̃N (zi,zj ) − g(zi,zj )| = 0. (A1)

Since s0 is independent of N , we only have to show that

Eq. (A1) is true within a subset where g satisfies the

smoothness conditions.

Using our definitions and the fact that g has Lipschitz

constant CL(N ) = C0
LNβ ,

|g̃N (zi,zj ) − g(zi,zj )| =

∣

∣

∣

∣

∣

g

(

μi − 1
2

K
,
μj − 1

2

K

)

− g(zi,zj )

∣

∣

∣

∣

∣

� sup
(z′

i ,z
′
j )∈kij

∣

∣

∣

∣

∣

g

(

μi − 1
2

K
,
μj − 1

2

K

)

− g(z′
i,z

′
j )

∣

∣

∣

∣

∣

� CL sup
(z′

i ,z
′
j )∈kij

⎡

⎣

(

μi − 1
2

K
− z′

i

)2

+

(

μj − 1
2

K
− z′

j

)2
⎤

⎦

1/2

= C0
L

Nβ

2K
. (A2)

So finally,

lim
N→∞

|g̃N (zi,zj ) − g(zi,zj )| �
C0

L

2
lim

N→∞

Nβ

K(N )
= 0. (A3)

APPENDIX B: THE CHARACTERISTIC

POLYNOMIALS OF G
(2)

N AND Q

Here we compute directly the characteristic polynomials

of G
(2)
N and Q [Eqs. (42) and (43)] using the minor expansion

formula.
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ALJADEFF, RENFREW, VEGUÉ, AND SHARPEE PHYSICAL REVIEW E 93, 022302 (2016)

1. Calculation of spectrum of G(2)

Recall that N = NE + NI , and let G
(2)
k be the k×k matrix

with elements taken from the intersection of k specific rows

and columns of G
(2)
N . The notation G

(2)
kE ,kI

will indicate that

exactly kE and kI of these rows and columns correspond to

excitatory and inhibitory neurons, respectively.

For convenience we will use v = p0(1 − p0) and w =
W 2

0 p0(1 − p0). We would like to write an expression for the

characteristic polynomial of G
(2)
NE+NI

using the sums over its

diagonal minors

ANE ,NI
(�) =

N
∑

k=0

(−1)kak�
N−k, (B1)

where ak =
∑

detG
(2)
k for k � 1 and a0 = 1. The notation

∑

detG
(2)
k means a sum over all combinations of NE,NI such

that NE + NI = k (i.e., the so-called k-row diagonal minors

of G
(2)
N ). We will compute a0, . . . ,a4 explicitly and show that

ak = 0 for k > 4.

We begin by noting that the determinant of the 3×3 matrix

G
(2)
3,0 = diag(x1,x2,x3)

⎛

⎝

1 − x1y1 1 − x1y2 1 − x1y3

1 − x2y1 1 − x2y2 1 − x2y3

1 − x3y1 1 − x3y2 1 − x3y3

⎞

⎠

× diag(y1,y2,y3)

is 0 because the middle matrix is the sum of two rank 1

matrices.

The coefficient a0

By definition, a0 = 1.

The coefficient a1

The second coefficient, a1 is simply the trace

Tr
{

G
(2)
NE ,NI

}

=
NE
∑

i=1

xiyi(1 − xiyi) + NIw,

a1 = T − Z + NIw, (B2)

where in the second row we used the functions of the degree

sequences [Eq. (41)].

The coefficient a2

The third coefficient a2 is the sum of two row diagonal

minors. There are three types of diagonal minors, only two of

which are nonzero:

detG
(2)
2,0 = det

(

xi 0

0 xj

)

det

(

(1 − xiyi) (1 − xiyj )

(1 − xjyi) (1 − xjyj )

)

× det

(

yi 0

0 yj

)

= xixjyiyj (xiyj + xjyi − xiyi − xjyj ),

detG
(2)
1,1 = det

(

xiyi(1 − xiyi) w

v w

)

= w[xiyi(1 − xiyi) − v],

detG
(2)
0,2 = det

(

w w

w w

)

= 0. (B3)

Carrying out the summation over possible combinations,

∑

detG
(2)
2,0 =

∑

i<j

xixjyiyj (xiyj + xjyi − xiyi − xjyj )

=
1

2

NE
∑

i=1

NE
∑

j=1

xixjyiyj (xiyj +xjyi −xiyi −xjyj )

= R − ZT ,

∑

detG
(2)
1,1 = NIw

NE
∑

i=1

[xiyi(1 − xiyi) − v]

= NIw[T − Z − vNE]. (B4)

Putting these together we get

a2 = R − ZT + NIw[T − Z − vNE]. (B5)

The coefficient a3

The fourth coefficient a3 is the sum of all three row diagonal

minors. Now there are four types of minors, only one of which

is nonzero:

detG
(2)
3,0 = 0 (shown above),

detG
(2)
2,1 = det

⎛

⎜

⎝

xiyi(1 − xiyi) xiyj (1 − xiyj ) w

xjyi(1 − xjyi) xjyj (1 − xjyj ) w

v v w

⎞

⎟

⎠

= w detG
(2)
2,0 + vw[xjyi(1 − xjyi) + xiyj (1 − xiyj )

− xiyi(1 − xiyi) − xjyj (1 − xjyj )],

detG
(2)
1,2 = detG

(2)
0,3 = 0

(repeated columns of inhibitory neurons). (B6)

Carrying out the sum,

a3 =
∑

detG
(2)
2,1

= wNI [R − ZT ] + vwNI

1

2

NE
∑

i=1

NE
∑

j=1

[xjyi(1 − xjyi)

+ xiyj (1 − xiyj ) − xiyi(1 − xiyi) − xjyj (1 − xjyj )]

= wNI {R − ZT + v[S2 − U2 − NE(T − Z)]}. (B7)

The coefficient a4

The last nonzero coefficient is a4, the sum of all four row

diagonal minors. Here there are five types, only one of which
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is nonzero:

detG
(2)
4,0 = 0

(

because detG
(2)
3,0 = 0

)

,

detG
(2)
3,1 = det

⎛

⎜

⎜

⎜

⎝

xiyi(1 − xiyi) xiyj (1 − xiyj ) xiyk(1 − xiyk) w

xjyi(1 − xjyi) xjyj (1 − xjyj ) xjyk(1 − xjyk) w

xkyi(1 − xkyi) xkyj (1 − xkyj ) xkyk(1 − xkyk) w

v v v w

⎞

⎟

⎟

⎟

⎠

= vw(xi − xj )(xi − xk)(xj − xk)(yi − yj )(yi − yk)(yj − yk),

detG
(2)
2,2 = detG

(2)
1,3 = detG

(2)
0,4 = 0 (repeated columns of inhibitory neurons). (B8)

Carrying out the sum we get

a4 =
1

6
vwNI

NE
∑

i=1

NE
∑

j=1

NE
∑

k=1

(

x2
i xj − x2

i xk + x2
j xk − x2

j xi + x2
kxi − x2

kxj

)(

y2
i yj − y2

i yk + y2
j yk − y2

j yi + y2
kyi − y2

kyj

)

= NIvw[NE(ZT − R) − ZS2 − U2T + SUV]. (B9)

The coefficients ak with k > 4

Now we show that ak = 0 for k > 4. A diagonal minor

representing a subnetwork of five neurons or more can have

NI = 0, NI = 1, or NI � 2. If NI � 2 the diagonal minor is

zero because of repeated columns. If NI = 1, then NE � 4.

Here, the determinant is a weighted sum of k = NE − 1 =
N − 2 row diagonal minors of the form detG

(2)
NE−1,0 which is

zero for NE � 4. Last, if NI = 0 then again we have a sum of

terms of the form detG
(2)
NE ,0 which are zero as discussed above.

2. Calculation of spectrum of Q

Using a similar approach we will compute the characteristic

polynomial of Q and show that generically rank{Q} = 3.

Using the sums over diagonal minors of QNE+NI
,

BNE ,NI
(λ) =

N
∑

k=0

(−1)kbkλ
N−k, (B10)

where bk =
∑

detQk for k � 1 and where Qk is a k×k

matrix with elements taken from the intersection of k rows

and columns of Q. Again, QkE ,kI
will indicate that kE and

kI rows and columns correspond to excitatory and inhibitory

neurons, respectively.

The coefficient b0

By definition we have b0 = 1.

The coefficient b1

The second term is the trace

b1 = Tr
{

QNE+NI

}

=
NE
∑

i=1

xiyi − NIW0p0

= T − NIW0p0. (B11)

The coefficient b2

The third coefficient is the sum over two row diagonal

minors:

detQ2,0 = det

(

xiyi xiyj

xjyi xjyj

)

= 0,

detQ1,1 = det

(

xiyi −p0W0

p0 −p0W0

)

= p0W0(p0 − xiyi),

detQ0,2 = det

(

−p0W0 −p0W0

−p0W0 −p0W0

)

= 0; (B12)

carrying out the summation, we get

b2 = p0W0NI

NE
∑

i=1

(p0 − xiyi)

= p0W0NI (NEp0 − T ). (B13)

The coefficient b3

The fourth and last nonzero coefficient is the sum over three

row diagonal minors:

detQ3,0 = 0,

detQ2,1 =

⎛

⎝

xiyi xiyj −p0W0

xjyi xjyj −p0W0

p0 p0 −p0W0

⎞

⎠

= p2
0W0(xiyi + xjyj − xiyj − xjyi),

detQ1,2 = det Q0,3 = 0 (repeated columns). (B14)

Carrying out the sum,

b3 = NIp
2
0W0

∑

i<j

(xiyi + xjyj − xiyj − xjyi)

=
1

2
NIp

2
0W0

NE
∑

i=1

NE
∑

j=1

(xiyi + xjyj − xiyj − xjyi)

= NIp
2
0W0(NET − S2). (B15)
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The coefficients bk with k > 3

Now we show that bk = 0 for k > 3. A minor representing a

subnetwork of four neurons or more can have NI = 0, NI = 1,

or NI � 2. If NI � 2 the minor is zero because of repeated

columns. If NI = 1, then NE � 3. Here, the determinant is a

sum of k = NE − 1 = N − 2 row diagonal minors of the form

detQNE−1,0 which is zero for NE � 3. Last, if NI = 0 then

again we have a sum of terms of the form detQNE ,0 which is

zero as discussed above.

APPENDIX C: NETWORKS WITH Ŵ

DEGREE DISTRIBUTIONS

We choose a specific parametrization where the marginals

of the joint in- and out-degree distribution are Ŵ with form

parameter κ , scale parameter θ , and have average correlation

ρ. Owing to the properties of sums of random variables that

follow a Ŵ distribution, we can write the random in- and out-

degree sequences as

kin
i = k1i + k2i, k1i ∼ Ŵ(κρ,θ ),

kout
i = k1i + k3i, k2i,k3i ∼ Ŵ(κ(1 − ρ),θ ), (C1)

where 1 � i � NE . In this appendix 〈·〉 will denote averages

over the joint in- and out-degree distribution.

The moments of the Ŵ distribution imply that, for this

parametrization,

〈(

kin
i

)n〉 =
〈(

kout
i

)n〉 = θn

n−1
∏

m=0

(κ + m) (C2)

for all 1 � i � NE . Here, since elements of kin
i and kout

i are

(separately) independent and identically distributed we will

suppress the subscript i and superscripts in,out when possible,

and let 〈k2〉 = 〈kin⊤kin〉, kinkout = kin⊤kout, etc.

One can verify that indeed the average correlation between

the in- and out-degree sequences is

〈kinkout〉 − 〈kin〉〈kout〉
√

〈kin2 − 〈kin〉2〉
√

〈kout2 − 〈kout〉2〉
= ρ. (C3)

Using this parametrization we compute the averages

〈T 〉,〈S〉, etc., and express them in terms of ρ, θ, κ , and NE .

The functional T

T =
NE
∑

i=1

xiyi =
1

NEκθ

NE
∑

i=1

kin
i kout

i ,

〈T 〉 =
1

κθ
〈kinkout〉 = θ (ρ + κ). (C4)

The functional S

S =
NE
∑

i=1

xi =
1

√
NEκθ

NE
∑

i=1

kin
i ,

〈S〉 =
√

NE

κθ
〈k〉 =

√

NEκθ. (C5)

The functional U

U =
NE
∑

i=1

x2
i =

1

NEκθ

NE
∑

i=1

kin2
i ,

〈U〉 =
1

κθ
〈k2〉 = θ (κ + 1). (C6)

The functional Z

To compute 〈Z〉 we first derive an expression for 〈kin2kout2〉.
Using the independence of k1,k2,k3,

〈kin2kout2〉 =
〈(

k2
1 + 2k1k2 + k2

2

)(

k2
1 + 2k1k3 + k2

3

)〉

= θ4{6κρ + κ2[1 + 8ρ + 2ρ2]

+ 2κ3[1 + 2ρ] + κ4}. (C7)

Now we can write

Z =
NE
∑

i=1

x2
i y

2
i =

1

N2
Eκ2θ2

NE
∑

i=1

kin2
i kout2

i ,

〈Z〉 =
1

NEκ2θ2
〈kin2kout2〉

=
θ2

NE

{

6
ρ

κ
+ [1 + 8ρ + 2ρ2]

+2κ[1 + 2ρ] + κ2

}

. (C8)

The functional R

To compute 〈R〉 (and 〈V〉) we first derive an expression for

〈kinkout2〉. Using the independence of k1,k2,k3,

〈kin2kout〉 =
〈(

k2
1 + 2k1k2 + k2

2

)

(k1 + k3)
〉

= θ3κ(κ + 1)(κ + 2ρ),

〈kinkout2〉 =
〈

(k1 + k2)
(

k2
1 + 2k1k3 + k2

3

)〉

= θ3κ(κ + 1)(κ + 2ρ). (C9)

Now we can write

R =
1

N3
Eκ3θ3

(

NE
∑

i=1

kin
i kout2

i

)(

NE
∑

i=1

kin2
i kout

i

)

,

〈R〉 =
1

NEκ3θ3
〈kinkout2〉〈kin2kout〉

=
θ3(κ + 1)2(κ + 2ρ)2

NEκ
. (C10)

The functional V

V =
1

N3
Eκ3θ3

NE
∑

i=1

(

kin
i kout2

i + kin2
i kout

i

)

.

〈V〉 =
1

N2
Eκ3θ3

(〈kinkout2〉 + 〈kin2kout〉)

=
2(κ + 1)(κ + 2ρ)

N2
Eκ2

. (C11)
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