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Current dimensionality-reduction methods can identify relevant sub-
spaces for neural computations but do not favor one basis over the other
within the relevant subspace. Finding the appropriate basis can sim-
plify the description of the nonlinear computation with respect to the
relevant variables, making it easier to elucidate the underlying neural
computation and make hypotheses about the neural circuitry, giving rise
to the observed responses. Part of the problem is that although some of
the dimensionality reduction methods can identify many of the relevant
dimensions, it is usually difficult to map out or interpret the nonlin-
ear transformation with respect to more than a few relevant dimensions
simultaneously without some simplifying assumptions. While recent ap-
proaches make it possible to create predictive models based on many rel-
evant dimensions simultaneously, there still remains the need to relate
such predictive models to the mechanistic descriptions of the operation
of underlying neural circuitry. Here we demonstrate that transforming to
a basis within the relevant subspace where the neural computation is best
described by a given nonlinear function often makes it easier to interpret
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the computation and describe it with a small number of parameters. We
refer to the corresponding basis as the functional basis, and illustrate the
utility of such transformation in the context of logical OR and logical
AND functions. We show that although dimensionality-reduction meth-
ods such as spike-triggered covariance are able to find a relevant subspace,
they often produce dimensions that are difficult to interpret and do not
correspond to a functional basis. The functional features can be found
using a maximum likelihood approach. The results are illustrated using
simulated neurons and recordings from retinal ganglion cells. The result-
ing features are uniquely defined and nonorthogonal, and they make it
easier to relate computational and mechanistic models to each other.

1 Introduction

A central challenge in the study of sensory processing neurons lies in dis-
cerning the features of a given stimulus that influence spiking behavior.
It has become apparent in recent years that many neurons are selective
for more than one stimulus feature (Atencio, Sharpee, & Schreiner, 2008;
Cantrell, Cang, Troy, & Liu, 2010; Chen, Han, Poo, & Dan, 2007; Fairhall
et al., 2006; Felsen, Touryan, Han, & Dan, 2005; Fox, Fairhall, & Daniel,
2010; Hong, Agüera y Arcas, & Fairhall, 2007; Horwitz, Chichilnisky, & Al-
bright, 2005, 2007; Kim, Lazar, & Slutskiy, 2011; Maravall, Petersen, Fairhall,
Arabzadeh, & Diamond, 2007; Rust, Schwartz, Movshon, & Simoncelli,
2005; Sincich, Horton, & Sharpee, 2009; Touryan, Lau, & Dan, 2002), some-
times as many as a dozen, leading to highly nonlinear and potentially
very complex input-output relationships. Dimensionality-reduction meth-
ods, such as spike-triggered covariance (STC) and its extensions (Bialek &
de Ruyter van Steveninck, 2005; de Ruyter van Steveninck & Bialek, 1988;
Paninski, 2003; Park & Pillow, 2011; Pillow & Simoncelli, 2006; Schwartz,
Chichilnisky, & Simoncelli, 2002; Schwartz, Pillow, Rust, & Simoncelli, 2006)
or maximally informative dimensions (MID) and its extensions (Fitzgerald,
Rowekamp, Sincich, & Sharpee, 2011; Rajan & Bialek, 2012; Sharpee, Rust,
& Bialek, 2004), are able to produce linear subspaces that are relevant to the
spiking activity of a neuron according to some metric (e.g., changes in stim-
ulus covariance caused by spiking or mutual information). However, these
and other dimensionality-reduction methods specify features not uniquely,
but up to a linear combination of them. Often the results are presented in
terms of orthogonal bases. Such orthogonal representations make it dif-
ficult to infer the corresponding neural computation that often involve a
set of overlapping stimulus features, as in many types of motion compu-
tations (Gollisch & Meister, 2010). Here we show that for certain types of
computations, the relevant subspace produced by these methods contains
extractable information about the functional neural circuitry involved in
sensory processing.
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The STC or MID subspaces are defined by a set of basis vectors that are
often interpreted as the stimulus features encoded by a neuron. However,
it may be more appropriate to say that the features are defined by a func-
tional basis, which spans the same subspace. The functional basis is a set
of features that best accounts for the observed nonlinearities in the neural
response using a predefined function. While the STC and MID bases cer-
tainly have a meaning in terms of their respective metrics, they might not
coincide with the functional basis, which one may hope will yield insights
into the underlying neural circuitry and may be amenable to interpretation.
For example, the functional basis may be nonorthogonal, which cannot be
matched by orthogonal STC bases. It is possible to order dimensions ac-
cording to how much information they capture (Pillow & Simoncelli, 2006),
but the resultant features also often come out to be orthogonal. In addi-
tion, the functional basis may help achieve a more concise description of
the nonlinear gain function that describes how the neural spiking proba-
bility varies with stimulus components along the features. The nonlinear
gain function, together with the set of stimulus features, forms the so-called
linear-nonlinear (LN) model of the neural response (Chichilnisky, 2001; de
Boer & Kuyper, 1968; Meister & Berry, 1999; Schwartz et al., 2006; Victor &
Shapley, 1980).

Here we explore the Boolean operations corresponding to logical OR and
logical AND computations, which are thought to describe the computations
of some real neurons, such as those that contribute to translation invariance
(Riesenhuber & Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio,
2007), various types of motion computation (Gollisch & Meister, 2010), build
selectivity to increasingly complex stimulus features (Barlow & Levick,
1965), or implement coincidence detection (Carr & Konishi, 1988).

We show that operations of this kind have clearly defined functional
bases. The functional bases may span the same subspace as STC basis, yet
they allow easier interpretation of the neural computation and the likely
neural architecture underlying it. We describe a way to extract the functional
feature set from the STC basis and demonstrate the method on several bio-
logically inspired stimulated neurons, as well as recordings of salamander
retinal ganglion cells.

1.1 Functional Bases. Consider a neuron encoding a D-dimensional
stimulus S. The neural response y is binary (when considered in a small
time window), with y = 0 meaning the cell is silent and y = 1 meaning the
cell spikes. The instantaneous firing rate of such a neuron is proportional
to P(y = 1|S), the conditional probability of a spike. The neuron is said to
be selective for n features of the stimulus if P(y = 1|S) = f (x1, x2, . . . , xn),
where xi = S · vi is the projection of the stimulus onto a vector vi. The
collection of vectors {vi} represents the stimulus features for which the
neuron is selective.
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1.1.1 Nonorthogonal Feature Sets. For neurons beyond the sensory trans-
duction stage, the features {vi} are determined by the relevant stimulus
features of afferent neurons and in general are not orthogonal. For exam-
ple, a retinal ganglion cell may combine inputs from several bipolar cells
that have overlapping receptive fields (Asari & Meister, 2012; Cohen &
Sterling, 1991). The STC analysis would typically yield the sum and differ-
ence between the bipolar cells’ receptive fields, as schematically illustrated
in Figures 1 and 5. Although the neural response function f can be defined
in terms of any linearly independent basis formed from a linear combina-
tion of the feature vectors, we are interested in finding a basis that is more
closely related to its biological function. Many types of functions can be
described using logical operations. Therefore, in this work, we focus on
finding representations of f that make such logical descriptions explicit and
refer to the corresponding basis as the functional basis.

As an example, consider a neuron selective for a set of features
{v1, v2, . . . , vn}, using a noisy logical OR operation

f (x1, x2, . . . , xn) =
{

1, if xi + ηi ≥ θi for any i ∈ {1, 2, . . . , n}
0, otherwise

, (1.1)

where ηi is gaussian noise added to x and θi is the spiking threshold along
dimension vi. A particular instance of this type of neuron is shown in
Figure 1A for n = 2. In this figure, open circles represent stimuli for which
y = 0 and the filled circles represent stimuli for which y = 1, separated by
the thresholds (dashed lines) along the dimensions v1 and v2.

The horizontal s1 and vertical s2 axes of the plot form the basis that a
method like STC or MID might recover (in this case, they actually corre-
spond to STC dimensions), but a more natural choice of basis is given by v1
and v2. These features v1 and v2 have a simple meaning in the computation
performed by the cell (see equation 1.1). By comparison, the nonlinear gain
function would require a more complex description in terms of s1 and s2;
for example, the threshold value along the s1 dimension depends on the
value of s2. In a general case, the description of the nonlinear gain function
along a set of n axes requires a large number of parameters, such as Nn

bins
values, where Nbins is the number of bins along each of the dimensions.

This leads to the curse of dimensionality, which makes it difficult to
map out or describe the nonlinear computation at a conceptual level with
respect to more than a few relevant dimensions, although recent computa-
tional approaches (Park, Horwitz, & Pillow, 2011) make it possible to build
predictive models with respect to many dimensions simultaneously. The
transformation to the functional basis provides a way to model the nonlin-
ear gain function with a small number of parameters, such as the threshold
θi, scale, and noise magnitude along each of the axes in the functional
basis. The number of parameters increases linearly with the number of
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A B

Figure 1: Computations in two dimensions with nonorthogonal features. Each
dot represents a high-dimensional stimulus that has been projected onto this
relevant subspace with axes s1 and s2 recovered by STC method. The filled circles
are stimuli for which y = 1 and the empty circles are those for which y = 0. Both
logical OR (A) and logical AND operations (B) with two nonorthogonal features
v1 and v2 are defined by two thresholds (dashed lines) that lie perpendicular
to the feature directions. In the case of logical OR, any stimulus above either
threshold causes a spike (corrupted by gaussian noise), whereas for a logical
AND function, stimuli must be above all thresholds to elicit spikes. In both
panels, the parts of the thresholds that determine spiking behavior are shown
in black and the irrelevant parts in gray. Note that logical OR nonlinearity leads
to the crescent-shape distribution of spike-eliciting inputs that are common in
sensory systems (Fairhall et al., 2006).

relevant dimensions, and not exponentially as in the case of nonparametric
descriptions.

Another computation relevant to biology is the logical AND operation,
described by

f (x1, x2, . . . , xn) =
{

1, if xi + ηi ≥ θi for all i ∈ {1, 2, . . . , n}
0, otherwise

. (1.2)

An example of this function is shown in Figure 1B for n = 2. Again, the
features defined by the threshold directions are not orthogonal and therefore
could not be found using STC.

We note that the fact that the neural response function depends on n
features (as in equations 1.1 and 1.2) does not exclude the possibility that
the relevant subspace will have a lower dimensionality d < n. This will
happen when the n features are linearly dependent. For instance, a Boolean
function can have n planar thresholds in a d-dimensional relevant subspace
where n > d. However in practice, it is unlikely that different inputs to
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a neuron will have linearly dependent stimulus features. For example, if
there are three presynaptic neurons, it is unlikely that each of them is not
sensitive to at least partly novel aspects of the stimulus.

1.2 Finding the Functional Bases for Boolean Computations. The fea-
tures encoded by the different pathways in a neural circuit are confined
to a subspace in the high-dimensional stimulus space. Therefore, finding a
functional basis can be simplified by first extracting this subspace using ex-
isting dimensionality-reduction methods such as STC. Once that subspace
is determined, an analytical function representing the boolean OR and AND
operations can be fit to identify a set of functional features.

1.2.1 Dimensionality Reduction. The STC method is designed to work
with gaussian stimuli, and as such, we draw samples S(t) for t = 1, 2, . . . , T
from a D-dimensional zero mean normal distribution N (0,Cprior), where
Cprior is the covariance matrix. Applying equation 1.1 with n features pro-
duces a model cell spike train {y(t)}, which can be used to calculate the
spike-triggered covariance Cspike, defined by the elements

Cspike(i, j) = 1
T

T∑
t=1

y(t)Si(t)Sj(t) − 1
T2

T∑
t=1

y(t)Si(t)
T∑

t=1

y(t)Sj(t). (1.3)

The change in covariance caused by spiking is �C = Cspike − Cprior. By
diagonalizing �C, we obtain the dimensions along which the covariance is
altered by the neural response. These can be identified by the eigenvectors
that have nonzero eigenvalues. This procedure is valid for uncorrelated or
spherically symmetric stimuli (Bialek & de Ruyter van Steveninck, 2005;
Chichilnisky, 2001; Samengo & Gollisch, 2013; Schwartz et al., 2006). Other
methods can be used to find the relevant subspace for more complex stimuli
(Fitzgerald, Rowekamp et al., 2011; Park & Pillow, 2011; Sharpee et al., 2004).
Here we focus on uncorrelated stimuli, because this work is devoted to
finding a specific basis within the relevant subspace, and not the subspace
itself.

The accuracy with which the relevant subspace is found can be quantified
using an overlap metric (Rowekamp & Sharpee, 2011) with respect to the
subspace spanned by the features used by the model:

O =
d
√

|Det(UVT )|
2d
√

|Det(UUT )| 2d
√

|Det(VVT )|
, (1.4)

where U and V are d × D matrices whose rows are the normalized eigen-
vectors {ui} and features {vi}, respectively. This metric is bounded between
0 and 1, with 0 meaning the two subspaces have no overlap and 1 meaning
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they are identical, and gives us a way to evaluate our confidence in the
dimensionality-reduction step. Note that if the number of features {vi} is
larger than the dimensionality d of the relevant subspace, one can still
choose d features that span that space to compute the overlap.

1.2.2 Maximum Likelihood Models. Given this reduced space, we wish to
find the functional basis by looking for linear combinations of the vectors
ui that best approximate a logical OR or logical AND computation. Such
functions have the general form

POR(y = 1|S) = 1 −
n∏

α=1

[1 − g(UTAα · S)], (1.5)

PAND(y = 1|S) =
n∏

α=1

g(UTAα · S), (1.6)

where each Aα is a d-dimensional vector that describes the components of
αth axes of the functional basis within the STC basis. The function g(UTAα ·
S) is some threshold-like function that describes the spike probability along
the direction of the αth functional feature of the computation.

To make progress, we must choose a specific functional form of
g(UTAα · S). An obvious choice is the logistic function gα = 1/(1 + exp(aα +
UTAα · S)), where aα determines the location of the transition from silence
to spiking. This choice of g is able to handle noise in the computation, as
well as different thresholds along different features. It is also analytically
quite tractable and has an information-theoretic interpretation as the least
biased response function (Fitzgerald, Sincich, & Sharpee, 2011) consistent
with encoding of a linear component along the functional feature.

The parameters {Aα} and {aα} can be found by maximizing the log like-
lihood. For a logical OR, this is

LOR =
N∑

t=1

[
y(t)log

(
1 −

n∏
α=1

1
1 + e−a

α
−F

α
·S(t)

)

− (1 − y(t))
n∑

α=1

log(1 + e−a
α
−F

α
·S(t))

]
, (1.7)

where Fα = UTAα are the functional basis vectors. Note that the functional
basis vectors are not normalized to length 1. This optimization problem
can be implemented using a straightforward conjugate gradient algorithm.
In the end, the parameters {aα} that determine the threshold positions are
unimportant if all that is desired is an estimate of the functional basis. The
typical run time for the algorithm with 200,000 stimulus frames, each of
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which had 256 pixels, is around 5 minutes on a 3.2 GHz desktop computer.
Convergence time increases linearly with data set size and the number of
basis vectors fit, and was not affected by the signal-to-noise ratio of the data
set. The code is publicly available online at http://cnl-t.salk.edu/Code/.

2 Results

2.1 Model Cells. Three model cells were created to test whether max-
imizing equation 1.7 is able to recover the functional basis vectors. In all
cases 200,000 stimulus samples were created from an uncorrelated gaussian
distribution, with Si ∈ {0, . . . , 255} representing the ith pixel intensity of an
image. The response models were chosen to be logical OR functions, de-
fined in the same manner as equation 1.1. The thresholds along each feature
direction were set to the same value within a given model. The gaussian
noise was added to the projections in such a way that the overall probabil-
ity of a spike was between 0.2 and 0.4 for all models. The STC subspace in
all cases had an overlap O > 0.95, indicating a very good recovery of the
model subspaces.

The first model considered is an example of a translationally invariant
feature detector, shown in Figure 2A. The functional basis vectors are four
shifted versions of a center-surround feature, located in the four corners
of the image. These features overlap and are not orthogonal, and therefore
the STC basis, shown in Figure 2B, is formed from linear combinations of
these features. The logical OR functional dimensions make the computation
performed by the cell difficult to interpret in the STC basis. The maximum
likelihood OR solution for the functional basis with four features is shown
in Figure 2C and matches quite well with the true features.

We also fit a maximum likelihood AND function to the STC basis for
comparison. The outcome for the logical AND functional basis is shown
in Figure 2D. Each of the four features is very nearly identical, indicating
that the optimal solution for a logical AND is in fact not a logical AND at
all, but rather a logistic function along a single dimension. This qualitative
observation is quantified below.

The performance of these fits can be evaluated by comparing the pre-
dicted spike probability as a function of the stimulus to that obtained from
the true model cell on repeated presentations of a group of stimuli. This is
shown in Figure 2E for a 50-frame section of a 200,000-frame stimulus pre-
sented 10 times to the model cell. The spike probability obtained from the
model (top panel) matches very well with the maximum likelihood logical
OR (middle panel) and has a correlation coefficient of r = 0.97 across all
200,000 frames. The maximum likelihood logical AND has a poorer perfor-
mance, with r = 0.77. This comparison provides a way to determine how
much like an OR or AND operation is the computation performed by a real
cell.
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Figure 2: Translationally invariant model cell. The computation performed by
the model is a logical OR operation on a center-surround feature, shifted to the
four corners of the receptive field (A). The STC basis (B) and the maximum
likelihood OR functional basis (C) both span the same space, but are much
different in their appearance and interpretation. A maximum likelihood AND
fit (D) finds four identical features, which do not match any of the model fea-
tures. (E) Comparing the model spike probabilities generated from repeated
presentations of a stimulus sequence to the predicted spike probabilities shows
that the logical OR fit outperforms the logical AND fit significantly, with cor-
relation coefficients of r = 0.97 and r = 0.77, respectively. (F) The average log
likelihood per time bin for logical AND and OR models with different number
of functional basis vectors. (G) The transformation matrix from the STC to the
functional bases (here, each vector was normalized to length 1 for presentation
purposes).
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Figure 3: Rotationally invariant model cell. The computation performed by the
model is a logical OR operation on a curved feature. The functional basis of the
model (A) is defined by rotating the feature to eight different orientations. The
(B) STC basis and (C) the maximum likelihood functional basis. The presentation
order of the features in panel C was chosen to match the corresponding features
of the model logical OR.

If one assumed no a priori knowledge of the number of features in
this example, one can determine the optimal number of features to fit by
performing a maximum log-likelihood calculation for a given number of
features included in the model (see Figure 2F). In the case of the logical OR,
the log likelihood increases as the features are added up to four. When the
features are increased beyond four (the correct number for this model), no
further increases in log likelihood are observed. This happens because extra
features are either noise-like and have such large thresholds associated with
them that they do not affect the spiking, or they reproduce one of the earlier
features. In the case of the logical AND function, the log likelihood does not
increase as more features are added to the model, because all of the features
are roughly the same. Thus, finding the number of features where the log
likelihood saturates provides a way to determine the correct number of
features for a given model. The choice of a particular model structure, such
as the logical AND or logical OR model, can be made according to which
models yields a larger log likelihood.

As another example of an invariant computation, we tested a rota-
tionally invariant model, shown in Figure 3. The model is selective for
a curved feature at eight different orientations (see Figure 3A). Using STC,
the eight-dimensional subspace was recovered (see Figure 3B) but had little
resemblance to the functional feature set. The maximum likelihood estimate
shown in Figure 3C, however, clearly recovers the functional basis.

Up to this point we have been fitting maximum likelihood functions
with nML = nmodel and considered the case with no overcompleteness where
nmodel equals the dimensionality d of the relevant subspace. However, the
number of features is not known a priori, and therefore nML may be varied
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Figure 4: Changing the number of functional features. A maximum likelihood
OR fit with nML = 7 (A) and nML = 9 (B). With the nML < nmodel, some of the
features appear as linear combinations of the true features, whereas for the
nML > nmodel, some of the features are redundant and begin to fit the noise in
the computation. The threshold values along those features are so large that
they seldom contribute to the model spiking.

to find the best fit. An example of this is shown in Figure 4 using the ro-
tationally invariant model cell. The functional basis for nML = 7, Figure 4,
recovers six of the features very well, while the seventh feature is a linear
combination of the last two, with one orientation dominant over the other.
For nML = 9, Figure 4B, recovers all eight features well, while the nineth
is mostly redundant, with some slight overfitting to the noise in the neural
computation. The redundant dimensions are associated with large thresh-
old values such that they seldom contribute to the model spiking.

The value of the functional basis model in finding invariant dimensions
is that no prior assumption is made about the type of invariance. By com-
parison, the recent method of maximally informative invariant dimensions
(MIID) requires one to specify the type of invariance prior to doing the
analysis (Eickenberg, Rowekamp, Kouh, & Sharpee, 2012; Vintch, Zaharia,
Movshon, & Simoncelli, 2012). The MIID method also imposes a constraint
that all of the features are identical except for shift in position or change in
angle. Thus, functional basis and invariant methods approach the problem
of characterizing neural feature selectivity with invariance from two differ-
ent perspectives and in principle find the same dimensions if the assump-
tions made are congruent with the neural computation. Which method is
more appropriate for analysis depends on what prior knowledge one has
about the system and the degree to which invariance is exact.

To illustrate how the functional basis model can tackle a noninvariant
case, we apply it to an example model cell with features that are not shifted
or rotated copies of each other. Here, we considered computation inspired
by properties of retinal ganglion cells (see Figure 5). This cell encodes nine
blob-like features (see Figure 5A), which could represent the receptive fields
of individual bipolar cells (Cohen & Sterling, 1991), and therefore the model
could be interpreted as a logical OR retinal ganglion cell. Again the STC ba-
sis, shown in Figure 5C, makes it difficult to interpret the feature selectivity
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Figure 5: Logical OR model of a simulated retinal ganglion cell. Each of the nine
blob-like features (A) represents the receptive fields of individual bipolar cells
feeding into a retinal ganglion cell. (B) The maximum likelihood OR functional
basis. (C) The STC basis.

of this model neuron. At the same time, the maximum likelihood OR linear
combination of those vectors, shown in Figure 5B, matches well with the
model features. Thus, one of the main advantages of using functional basis
representation is that it can characterize the neural computation in cases
where the invariance type is not known a priori or invariance is not exact.

2.2 Application to Retinal Ganglion Cell Recordings. We now illus-
trate how the approach works for characterizing encoding of retinal gan-
glion cells (RGCs) in the salamander retina probed with uncorrelated stim-
uli. The white noise stimulus consisted of binary checks forming frames
with 40 × 40 pixels. The stimulus had 137,145 frames at a rate of 60 Hz.
There were 53 cells in the data set, with a wide range of activity from 118 to
30,908 total spikes (median 5453 spikes). The data set was collected as part
of a previous study, and the electrophysiological methods are described
there (Marre et al., 2012). As with the model cells, the first step of the anal-
ysis was to find the relevant subspace. We decided to focus on the spatial
profile of the neurons as a way of illustrating the potential of this method for
reconstructing receptive field properties of neurons (or parts of the neural
circuit) that are presynaptic to ganglion cells. In the case of retinal ganglion
cells, one might hope that the functional bases would then describe recep-
tive fields of bipolar cells feeding into a given ganglion cell or nonlinear
pieces within the dendritic computation of the ganglion cell (Soodak, Shap-
ley, & Kaplan, 1991). To take into account temporal integration properties
of RGCs, we computed the spatiotemporal spike-triggered average (STA)
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for each neuron (de Boer & Kuyper, 1968). We then performed the singular
value decomposition (Press, Teukolsky, Vetterling, & Flannery, 1992) of the
spatiotemporal STA and took the first principal temporal vector as the esti-
mate of the neuron’s temporal kernel. Applying this filter to stimuli yields
a set of spatial patterns that can then be associated with the measured neu-
ral responses. Subsequent analyses were carried out on 16 × 16 patches of
these temporally filtered spatial-only stimuli. The patches were centered
at the location of the maximum of the STA of a given neuron. To find the
relevant subspace, STC analysis was performed, and the relevant vectors
were determined by comparing the resulting eigenvalue distribution with
the eigenvalue distribution of a series of spike trains whose association
with stimuli was broken. The association between stimuli and responses
was broken by shifting the spike train forward by various amounts, with
a minimal amount of the shift. The advantage of this procedure compared
to shuffling spike trains is that it preserves all of the higher-order structure
in the spike train in addition to the average spike rate (Bialek & de Ruyter
van Steveninck, 2005). In our case, the minimal amount of shift was set to
100 frames. The STC analysis was then performed on 40 of such shifted
spike trains, and the eigenvalue distributions from these analyses were
combined. The eigenvalues from the measured (unshifted) spike train or
stimuli pairs were considered significant if they lay outside the bounds of
the eigenvalue distribution obtained with shifted spike trains. Of the 53
cells, 30 neurons had more than one relevant stimulus feature and therefore
were of interest for further investigation using functional bases. The number
of spikes available for these cells ranged between 192 and 21,894 (median
5426). For the example cell, which produced 8389 spikes, the STC method
yielded four significant dimensions (see Figure 6A). The STC dimensions
have commonly observed spatial profiles, with the dominant feature being
uniphasic and the secondary, tertiary, and quaternary features containing
two or more subregions of opposite polarity, similar to what was found in
the primary visual cortex (Rust et al., 2005).

To find the functional basis for this example neuron, we fit both the
logical OR and AND models. In this case, we focus the presentation of
results on the logical OR model, which accounted better for the responses
of this cell than the logical AND model did. First, the data set was split
into four sections, as in the jackknife method (Efron & Tibshirani, 1998). By
excluding one section for use as a test set to evaluate model performance
while the other three sections were used as training sets to fit the model,
we had four data sets with which to make a comparison of the functional
models. Since the individual test sets have different information content,
the log likelihoods cannot be directly compared. Rather, we computed a
normalized log-likelihood difference to compare models A and B:

�LA,B = LA − LB

|LA| + |LB| , (2.1)
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Figure 6: An example RGC stimulated by white noise. The STC basis (A) is
rotated according the logical OR functional basis method to produce the func-
tional basis (B). The relevant image features are plotted relative to the average
standard deviation per pixel. Unlike the STC basis, the image features in the
functional basis are localized. To show the relative positioning of functional
basis features relatively to the neuron’s receptive field, we fit these features
with two-dimensional gaussians. Ellipses show one standard deviation con-
tours from gaussian fits to the four functional basis features. Black ellipses
correspond the functional basis feature with which they are overlaid, and gray
ellipses correspond to the other three functional basis features. We show the
two-dimensional nonlinearity predicted (see equation 2.2) by the functional ba-
sis method (C), together with the empirically determined nonlinearity from the
spiking data (D) in the STC basis. The predicted nonlinearity (E) also closely
matches the empirical nonlinearity (F) when plotted in the functional basis
projection space.

where LA and LB are the log likelihoods of model A and B, respectively,
computed according to equation 1.7. If the mean log-likelihood difference
across all test sets, 〈�LA,B〉, was significantly greater than 0, then model A
was regarded as the better model. (The errors were computed using the
jackknife method (Efron & Tibshirani, 1998) by scaling the standard error of
the mean by t − 1, where t is the number of test data sets, to take into account
that the training data sets are not independent.) For the example RGC neu-
ron, the mean log-likelihood difference �LOR,AND = 0.0026 ± 0.0001. Com-
paring logical OR and logical AND to the LN model with nonparamet-
ric nonlinearity yielded values �LOR,LN = 0.5454 ± 0.006 and �LAND,LN =
0.5436 ± 0.006, respectively. This shows that for the example cell, logical OR
and logical AND both perform better than the nonparametric LN model
in making predictions, but the logical OR function is a better functional
basis model than the logical AND. We note that increasing the number of
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functional bases did not increase the log likelihood of the logical OR model
(logical OR model with respect to five features yielded the log-likelihood
difference �LOR5;OR4

= −0.0042 ± 0.0285). The features of the functional ba-
sis corresponding to the logical OR model are shown in Figure 6B. Unlike the
STC dimensions in Figure 6A, all of the components of the logical OR model
in Figure 6B are spatially localized and describe sensitivity to decrements in
light intensity in neighboring but displaced parts of the visual field. These
dimensions may correspond to the receptive fields of bipolar cells feeding
into this RGCs. The expected number of bipolar inputs is approximately 10
(Cohen & Sterling, 1991). Although this is somewhat greater than the four
features we observe here, the number of bipolar inputs is known to vary
depending on eccentricity, ganglion cell type, and species. It is also possible
that the functional basis dimensions we observe here correspond to nonlin-
ear subunits within the dendritic fields of RGCs, as has been discussed for
cells in the cat (Soodak et al., 1991) where 2 to 4 subunits were observed.
In any case, the subunits that we observe here are physiologically plausi-
ble and provide a way to describe functionally separate inputs to a given
RGC.

One may also compare this approach to methods that characterize inputs
by specifying that relevant features are the same up to position invariance,
as in the MIID method. On one hand, the MIID method can allow one
to potentially obtain more precise estimates of relevant features by pool-
ing measurements from different parts of the visual field. On the other
hand, one might be interested in the variability observed at different spatial
positions. In particular, for the example cell we are considering, the four
functional basis features are not exact copies of each shifted to different
positions. To determine how important it was to consider the individuality
of different functional basis dimensions, we compared the log likelihood
of the functional basis logical OR model with that of models built on nine
identical features shifted by one pixel from the peak of STA, respectively.
The log-likelihood difference of the invariant dimension model and the log-
likelihood logical OR model averaged across test sets for the example cell
was �LOR,MIID = 0.8710 ± 0.0011. (We also tried the translation-invariant
model with larger shifts from the STA peak, but these yielded even worse
predictive power.) Thus, in this case, the functional basis transformation
yielded much better predictive power compared to the model where fea-
tures are constrained to have the same profile shifted to different positions
in the visual field.

Similar results were obtained across the population of 30 cells with mul-
tidimensional relevant subspaces. The number of relevant dimensions per
neuron varied from two to four, with 15 cells having two features, 9 cells
having three relevant features, and 6 cells having four relevant STC fea-
tures. All but two of these cells were best fit by the logical OR functional
basis model when compared to the logical AND model (see Figure 7A). No
cell was better fit by the LN model than the functional basis model (see
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A CB

Figure 7: The difference in log likelihoods of the logical OR model against the
logical OR model (A), LN model (B), and MIID (C) are plotted across the popu-
lation of cells. The dashed line marks the threshold value at zero corresponding
to the cross-over between the models that are being compared for the ability to
predict the neural responses. The logical OR model outperformed the logical
AND model and the nonparametric LN models for the majority of neurons.

Figure 7B). In fact, both functional basis models performed better than the
nonparametric LN model for every cell. In all cases, the log likelihood satu-
rated when the number of functional basis features chosen was equal to the
number of STC basis vectors. Using the same procedure described in the
previous paragraph, we applied MIID and compared it to the logical OR
model. No cells were better described by invariant dimensions compared
to functional basis representation (see Figure 7C).

The transformation to the functional basis can also be helpful for the
interpretation of the nonlinear response function. For the example neuron
in Figure 6D, the two-dimensional nonlinear firing rate function,

P(y = 1|xi, x j) =
∑
k �=i, j

〈P(y = 1|x1, x2, . . . , xd)〉xk
, (2.2)

with respect to STC dimensions si and sj has a characteristic crescent-like
shape, which is one of the types of nonlinearities previously reported in
RGCs (Fairhall et al., 2006). The logical OR provides a natural way to ex-
plain the occurrence of crescent-like nonlinearities as arising from a sen-
sitivity to similar but not identical features, each of which can trigger the
neural response. Such nonlinearities are common in both visual (Fairhall
et al., 2006; Rust et al., 2005) and auditory (Sharpee, Nagel, & Doupe, 2011)
systems. It is noteworthy that the nonlinearity of the model neuron built
according the logical OR in Figure 1 also has a crescent shape. Returning
to the example retinal neuron, we observe that the crescent shape of the
nonlinearity observed in the STC basis (panels C and D) is unfolded by the
transformation to the functional basis (panels E and F), as it should have
been. Furthermore, the measured nonlinearities (panels D and F) are closely
reproduced by the nonlinearities predicted by the model (panels C and E)
in both the STC and functional bases.
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3 Discussion

The concept of feature extraction using a linear subspace has found much
success in the analysis of sensory processing neurons. However, simply
discovering the relevant subspace is not necessarily the end of the story
if the goal is to gain insight into the neural circuitry responsible for the
processing of sensory information.

Dimensionality-reduction methods such as STC or MID identify the rel-
evant subspace by finding a basis that captures significant changes in the
stimulus covariance due to spiking or large amounts of the mutual infor-
mation. Despite the meaning inherent in these bases, the resulting features
are not necessarily the easiest to interpret in terms of functional computa-
tions. This is because standard dimensionality-reduction methods describe
the neural input-output function using an orthogonal basis, whereas the
relevant features of afferent inputs to a given neuron are often nonorthog-
onal. On the other hand, dimensionality-reduction methods for character-
izing neural features that are explicitly based on assumptions of invariance
(Eickenberg et al., 2012; Vintch et al., 2012) can account for nonorthogo-
nal features but cannot capture individually in the receptive field subunits,
also an important part of neural representation (Gauthier et al., 2009; Liu,
Stevens, & Sharpee, 2009). The functional basis representation provides a
compromise in that it does not impose a relationship between the relevant
stimulus features, for example, they do not have to be shifted or scaled
copies of each other. At the same time, searching for functional basis rep-
resentations that correspond to biologically relevant nonlinearities, such
as logical OR and AND nonlinearities (Riesenhuber & Poggio, 1999; Serre
et al., 2007), allows one to determine types of invariance pertinent to the
responses of a given neuron instead of imposing them a priori.

The results obtained by standard dimensionality-reduction techniques
and the functional basis methods are related in that they share the same
relevant stimulus subspace, differing only in the choice of basis within
that subspace. However, finding a functional basis representation is not
dependent on dimensionality-reduction methods such as STC or MID. In
principle, a maximum likelihood model of a logical OR or AND response
function with n features could be fit in the full D-dimensional stimulus
space. The appropriate number n of significant features can be determined
by maximizing the log likelihood with respect to the number of features
just as was done in the reduced subspace. Performing the computation on
the full stimulus space can be, however, a computationally daunting task.
Thus, the search for the functional basis can be performed effectively and
in a much more timely manner within the reduced subspace.

Although we have considered only two specific computational forms,
the idea of finding a functional basis may be extended to other types of
functions if simplifying features can be suitably defined. There are, how-
ever, many computations for which the functional basis is impossible to



Functional Bases for Multidimensional Neural Computations 1887

define without detailed knowledge of the underlying circuitry. For instance,
a radially symmetric function in two dimensions, such as in the energy
model of a complex cell in area V1 of the visual cortex (Adelson & Bergen,
1985; Rust et al., 2005), is equally well described by any choice of basis.
Even in this case, however, one can take advantage of the deviations from
the true radial symmetry that characterize a particular complex cell under
consideration to find the number of threshold-like units that can best ac-
count for its responses. Another example is when irregularities within the
retinal circuitry can help separate individual inputs to a given RGC (Field
et al., 2010; Liu et al., 2009; Soo, Schwartz, Sadeghi, & Berry, 2011). In sum-
mary, finding a functional basis can help bridge the divide between low-
dimensional descriptions of neural responses and the underlying neural
circuitry.
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