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Many learned behaviors are thought to require the activity of high-level neurons that represent categories of complex signals, such as
familiar faces or native speech sounds. How these complex, experience-dependent neural responses emerge within the brain’s circuitry
is not well understood. The caudomedial mesopallium (CMM), a secondary auditory region in the songbird brain, contains neurons that
respond to specific combinations of song components and respond preferentially to the songs that birds have learned to recognize. Here,
we examine the transformation of these learned responses across a broader forebrain circuit that includes the caudolateral mesopallium
(CLM), an auditory region that provides input to CMM. We recorded extracellular single-unit activity in CLM and CMM in European
starlings trained to recognize sets of conspecific songs and compared multiple encoding properties of neurons between these regions. We
find that the responses of CMM neurons are more selective between song components, convey more information about song components,
and are more variable over repeated components than the responses of CLM neurons. While learning enhances neural encoding of song
components in both regions, CMM neurons encode more information about the learned categories associated with songs than do CLM
neurons. Collectively, these data suggest that CLM and CMM are part of a functional sensory hierarchy that is modified by learning to yield
representations of natural vocal signals that are increasingly informative with respect to behavior.

Introduction
Faced with an immense quantity of sensory input, individuals
learn to identify sensory features relevant to behavioral goals and
ignore other features. The representation of objects by high-level
sensory neurons depends heavily on this form of learning (Rolls
et al., 1989; Sigala and Logothetis, 2002; Gentner and Margoliash,
2003) and some neurons represent learned categories of objects
rather than the objects themselves (Freedman et al., 2001; Sigala
and Logothetis, 2002; Freedman and Assad, 2006). These kinds of
complex representations likely emerge from processing pathways
in which higher-order neurons integrate convergent input from
lower-order neurons (Felleman and Van Essen, 1991; Binder et
al., 2000; Kaas and Hackett, 2000; Riesenhuber and Poggio, 2000;
Chechik et al., 2006; Rauschecker and Scott, 2009). However,
very few studies have examined changes in the encoding of natu-
ral stimuli along these processing pathways (Chechik et al., 2006;
Rust and DiCarlo, 2010) or how learning mediates this encoding
(Freedman et al., 2003; Freedman and Assad, 2006), particularly
in the auditory domain.

Songbirds serve as an excellent model system to study the
learning-dependent neural encoding of natural signals because
they easily learn to identify conspecific songs (Gentner and Mar-
goliash, 2003) and have well defined neural circuitry specialized
for processing songs (Hsu et al., 2004; Woolley et al., 2005, 2009).
The caudomedial mesopallium (CMM), a secondary auditory
area, contains some of the most complex neurons in the avian
auditory system (Meliza et al., 2010), which respond stronger to
learned songs than to novel songs (Gentner and Margoliash,
2003). As with high-level brain regions in mammals, however,
the circuitry that produces the experience-dependent CMM re-
sponses is not well understood. CMM receives indirect input
from field L (the analog of mammalian primary auditory cortex)
via bidirectional connectivity with the adjacent caudolateral
mesopallium (CLM) and caudomedial nidopallium (NCM) (Fig.
1a) (Vates et al., 1996). The responses of CLM neurons are less
well predicted by linear receptive field models (Sen et al., 2001)
and are more sharply tuned to the statistics of song (Hsu et al.,
2004) than are many field L neurons. Although processing in
CLM may contribute to the learning-dependent representations
of song in CMM, it is unknown whether the encoding of songs in
CLM differs from that in CMM or whether CLM encodes
learning-dependent information.

To understand the functional relationship between CLM and
CMM, we compare their neural encoding properties in European
starlings that have learned to recognize sets of conspecific songs
and ask whether learning modifies the responses of neurons dif-
ferently between CLM and CMM. We show that the responses of
CMM neurons are more selective between song components,
convey more information about song components, and respond
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with greater variability to repeated song
components. In both regions, learning in-
creases the information encoded about
song components, but CMM neurons en-
code more information about behavior-
ally defined song categories. These results
are consistent with a model of neural pro-
cessing in which information about natu-
ral vocal signals flows through CLM to
CMM, giving rise to complex representa-
tions of acoustic signals and their behav-
ioral relevance.

Materials and Methods
All experiments were performed in accordance
with the Institutional Animal Care and Use
Committee of the University of California, San
Diego.

Subjects
Nineteen adult European starlings (Sturnus
vulgaris) were wild-caught in southern Califor-
nia, and housed in aviaries with free access to
food and water until the commencement of be-
havioral training. At the start of training, sub-
jects were naive to all experimental procedures
and stimuli. Thirteen starlings were used for
CLM experiments, five starlings were used for
CMM experiments, and one starling was used
for both CLM and CMM experiments. Data
from CMM experiments were combined with a
subset of previously published data (Gentner
and Margoliash, 2003) from an additional four
starlings, yielding a total of 23 subjects. Very
few differences in behavioral training were ob-
served between the two sets of CMM data (sup-
plemental Table 1, available at www.jneurosci.
org as supplemental material). Twenty-eight of
the 48 CMM neurons reported here were from
these previously published data.

Stimuli
Six starling song stimuli were created from a
collection of songs previously recorded from
four adult male European starlings. Each stim-
ulus was a unique section of continuous song (durations ranging from
9.1 to 10.7 s) from a single male and shared no motifs with any other
stimulus. The six song stimuli were divided into three sets of two song
stimuli each. For each experimental subject, the three stimulus sets were
assigned as “rewarded,” “unrewarded,” and “novel” stimuli to reflect the
subject’s experience with those stimuli during behavioral training.
Across subjects, this assignment was counterbalanced such that the same
stimuli were used for different conditions in different birds. Nearly iden-
tical stimuli were used for CLM and CMM experiments.

Behavioral training
After acclimation to individual housing in a sound-attenuating chamber
(Acoustic Systems, ETS-Lindgren), each subject was trained on a stan-
dard go/no-go operant-conditioning procedure to classify two of the
song stimulus sets (Gentner and Margoliash, 2003). For each bird, the
rewarded songs were assigned as the “go” stimulus set and the unre-
warded songs were assigned as the “no-go” stimulus set. A subject started
a trial by inserting its beak into a small hole on a response panel inside the
sound-attenuating chamber (Fig. 1b), which initiated the playback of one
of the four stimuli, chosen at random. After stimulus playback ended, a
subject had 2 s to report its classification decision by either inserting its
beak again (a go response) or by refraining from inserting its beak (a
no-go response). Go responses to the go stimulus set were rewarded with
2 s access to food and go responses to the no-go stimulus set were pun-

ished with variable-duration darkness (range, 10 –90 s) during which no
food was available and trials could not be initiated. In all cases, no-go
responses were neither rewarded nor punished. Water was provided ad
libitum, but food was only available from correct go responses.

Neurophysiology
After achieving satisfactory classification performance (see results), each
subject underwent surgery under isoflurane anesthesia (1.5–2% concen-
tration) to prepare for recording. The top layer of skull was removed
from the region above CLM or CMM and a small metal pin was affixed to
the skull just caudal to the opening. Each subject recovered for 12–24 h
before neurophysiological recordings began. On the morning of the re-
cording day, the subject was anesthetized with urethane (20% by volume,
7 ml/kg), and head-fixed in a stereotactic apparatus inside a sound-
attenuating chamber. The subject was situated 30 cm from a speaker
through which the song stimuli were presented (all normalized to 95 dB
peak sound pressure level).

Extracellular electrical activity of single neurons in CLM or CMM in
response to 5–50 repetitions of all six song stimuli (presented in random
order) was recorded using glass-coated platinum-iridium wire electrodes
(1–3 M� impedance) inserted through a small craniotomy directly dor-
sal to CLM or CMM. The extracellular waveform was amplified (5000�
to 50,000� gain), filtered (high pass 300 Hz, low pass 3 kHz), sampled
(25 kHz), and stored for offline analysis (Cambridge Electronic Design).

c
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Figure 1. Behavioral training and starling neuroanatomy. a, Schematic diagram of the connectivity of the songbird auditory
system across two coronal planes of one hemisphere. b, Schematic of operant apparatus used for behavioral training. c, Mean
(�SEM) behavioral performance (d�) during learning for subjects used in CLM experiments (squares) and subjects used in CMM
experiments (circles). Error bars are across subjects. d, Distributions of recording locations for CLM neurons (gray bars) and CMM
neurons (black outlines). Hp, Hyperpallium; Ov, ovoidalis.
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At the end of the recording session, one to three fiduciary electrolytic
lesions (10 –20 �A, 10 –20 s) were made to facilitate recording site local-
ization using standard histological techniques.

All recording sites were confirmed to be within CLM or CMM (sup-
plemental Fig. 1c, available at www.jneurosci.org as supplemental mate-
rial). All CLM neurons were located between 1200 and 1650 �m from the
midline; all CMM neurons were located between 0 and 1000 �m from the
midline (Fig. 1d). Putative action potentials from single neurons were
identified by amplitude and sorted offline using principal component
analysis on waveform shape (Cambridge Electronic Design). Only action
potential waveforms with a single obvious cluster in principal
component-space and with very few refractory-period violations (sup-
plemental Fig. 1a,b, available at www.jneurosci.org as supplemental ma-
terial) were considered to be from a single neuron. Only 4.8% (7/145) of
all neurons exhibited any interspike intervals (ISIs) shorter than 1 ms,
and within that subset of neurons, ISIs shorter than 1 ms accounted for
�0.1% of all ISIs in each neuron.

Only neurons that responded significantly to any part of our stimulus
set were included in our data analysis. Response significance was deter-
mined quantitatively, following previously described methods (Gentner
and Margoliash, 2003). Briefly, the mean response to each song was
divided into 500 ms segments, and the variance of the mean response
over each segment was computed. The variance for each song was nor-
malized by the variance of spontaneous firing. To be considered audi-
tory, the largest normalized variance value needed to be greater than
(1.96 � 1 SE) � 1, where SE is the standard error of the normalized
variance values for the remaining songs, and 1 is the normalized variance
that would be expected for a nonauditory neuron.

Data analysis
Analyses were performed using custom-written MATLAB software.

Behavioral performance was evaluated using d� (Macmillan and Creel-
man, 2005),

d� � z score(Hit rate)

� z score(False alarm rate), (1)

a measure of discriminability between two dis-
tributions. Values of d� were computed in non-
overlapping blocks of 100 trials.

For most analyses of neural activity, re-
sponses to full song stimuli were segmented
into the responses to each constituent motif
(Fig. 2). The starting time for a motif was de-
fined as the onset of power for that motif, and
the ending time for a motif was defined as the
onset of power for the following motif. Thus, a
neuron’s response to a motif consisted of the
neural activity both during that motif and
during the subsequent silent period follow-
ing that motif. Each individual song stimulus
contained multiple renditions of some mo-
tifs, but because of subtle acoustical variabil-
ity between renditions, each rendition was
considered to be distinct for all analyses ex-
cept the variability analysis of repeated mo-
tifs (see Fig. 4).

Motif selectivity analysis. The nonparametric
selectivity of each neuron was calculated over
all motifs (rewarded, unrewarded, and novel)
collectively for each neuron (Rolls and Tovee,
1995; Vinje and Gallant, 2000):

S � �1 �
��ri/n�2

��ri
2/n�

���1 �
1

n�, (2)

where ri is the mean firing rate in response to
the ith motif, and n is the total number of
motifs. This measure ranges from 0 to 1, with
0 representing the minimum motif selectiv-
ity (responses to all motifs are identical) and

1 representing the maximum motif selectivity (response to only one
motif). Although this measure includes all responses from each neu-
ron, it emphasizes the larger values in the response distribution.
Therefore, we also used the entropy method (Lehky et al., 2005),
which equally considers selectivity of both excitatory and suppressive
responses. Both measures yielded the same result (supplemental Fig.
2, available at www.jneurosci.org as supplemental material). Mean
spontaneous firing rates did not differ significantly between CMM
(3.24 � 0.59 Hz) and CLM neurons (3.37 � 0.34 Hz; Wilcoxon rank
sum test, p 	 0.41).

Information analysis. Firing rates for each neuron’s evoked response to
each motif were divided into six equally spaced bins ranging from the
lowest firing rate to the highest firing rate elicited by that neuron. Six bins
were chosen to balance the need to capture the dynamic range of re-
sponses for each neuron with the need to appropriately sample the con-
ditional probabilities. For each neuron, identical firing rate bins were
used for all information calculations. Control analyses in which the num-
ber of bins varied from 2 to 10 yielded changes in the absolute number of
bits but did not alter the effect of learning on information or the differ-
ences between CLM and CMM (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material). In all cases, mutual information
was calculated as

I�s;r� � �
s,r

p�s,r�log2 � p�s,r�

p�s�p�r��, (3)

where s indexes the stimulus and r indexes the bin of the firing rate
response (Brenner et al., 2000; Cover and Thomas, 2006).

For mutual information between motif identity and motif firing rate,
p(r,s) represented the empirical joint probability distribution of motif firing
rates and motif identities. Because multiple renditions of single motifs were
considered to be distinct, the distribution of motif identities, p(s), was always

a b

Figure 2. Responses from two example neurons. Extracellular electrical activity recorded from a sample CLM neuron (a) and
CMM neuron (b) in response to rewarded motifs (top), unrewarded motifs (middle), and novel motifs (bottom). Scale bar in upper
left spectrogram denotes 0.5 s and 5 kHz. Scales are identical for all spectrograms.
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uniform. The distribution of firing rates, p(r), was
computed by averaging across the conditional
distributions for each motif. Information about
motif identity was computed in two ways: across
responses to all motifs regardless of stimulus class
(rewarded, unrewarded, and novel), and sepa-
rately for the motifs in each stimulus class. For
information encoded about all motifs (Fig. 3),
p(r) was found by averaging the conditional dis-
tributions across all motifs presented to each neu-
ron. For the information encoded about motifs
within each stimulus class (see Figs. 5,6), the con-
ditional distributions were averaged across mo-
tifs within each class to obtain separate p(r)
distributions for each class.

For mutual information between motif class
(rewarded, unrewarded, novel) and motif fir-
ing rate, p(r,s) represented the empirical joint
probability distribution of motif firing rates
and each motif’s associated stimulus class. This
distribution was determined by averaging the
response distributions for all motifs within
each stimulus class. The distribution of stimu-
lus classes, p(s), was uniform and the distribu-
tion of firing rates, p(r), was found by
averaging the class-conditional distributions.

For mutual information between song class
and song firing rate, calculations were exactly
analogous to calculations for motif class, ex-
cept that firing rate responses were averaged
over the entire duration of the presented song.

The significance of information encoded
about learned motif and song categories was
evaluated relative to information about ran-
domly shuffled categories. For shuffled motif
category information, each motif was ran-
domly assigned to one of three categories such that the behavioral mean-
ing of the categories was lost but the association between motif identity
and firing rate was preserved (because single trials were not shuffled).
This procedure was repeated for 100 random permutations to generate a
distribution of shuffled information values, providing an estimate of the
information encoded about arbitrary categories. The distribution of
shuffled values was then used to determine the p-value for the category
information for each neuron. Significance was evaluated at p � 0.05. For
song category information, shuffling was conducted similarly. However,
because there are only two songs per category, there are only eight dis-
tinct permutations of category assignment that disrupt all three original
category boundaries. Thus, information about learned categories was
considered significant when it was greater than the information about all
eight shuffled information values for each neuron. Importantly, because
neurons could encode any arbitrarily defined categories, positive infor-
mation about shuffled categories does not imply the presence of resid-
ual bias in the estimation of information about behaviorally defined
categories. Rather, neurons may “categorically” encode other features
of song, such as a particular spectrotemporal pattern that only ap-
pears in some motifs. Making a comparison with the shuffled catego-
ries thus provides a test of whether the information encoded about the
learned categories is greater than would be expected by chance.

Two control analyses for the mutual information were carried out.
First, to ensure that mutual information values were not solely depen-
dent on variations in a neuron’s dynamic range, we limited responses by
the maximum and minimum single-trial firing rate elicited by a novel
motif (supplemental Fig. 4, available at www.jneurosci.org as supple-
mental material). In this case, all firing rates from rewarded or unre-
warded motifs that were outside this range were ignored (i.e., considered
never to have occurred). Second, to test our assumption that responses to
multiple renditions of acoustically similar motifs are independent, mu-
tual information was recomputed with multiple renditions considered as
a single motif. Both controls yielded qualitatively similar results to those

reported in the text (supplemental Fig. 5, available at www.jneurosci.org
as supplemental material).

In addition, because estimates of information from limited samples
are inherently biased upward (Treves and Panzeri, 1995), bias was cor-
rected by extrapolating the information estimate for each neuron to an
infinite data size (Strong et al., 1998; Brenner et al., 2000). Variability in
the estimate of mutual information was determined by a jackknife resa-
mpling of the data. The SDs of the information estimations were very low
(median for estimates over all motifs: 0.014 bits, median for estimates
within motif classes: 0.022 bits), which indicates highly stable estima-
tions. Subtracting analytical estimates of the bias (Panzeri et al., 2007)
instead yielded qualitatively similar results to the extrapolation method.

Entropy values were computed using the same bins as were used for
information calculations. Total entropy was calculated as

HTotal�r� � 
� p�r�log2 p�r�. (4)

Noise entropy was calculated as

HNoise�r� � 
�
s

p�s��
r

p�r�s�log2 p�r�s�. (5)

Because estimates of the entropy are subject to similar biases as estimates
of the mutual information, bias in the computed entropy was corrected
by using methods analogous to those described for mutual information.

Repeated motif analysis. Four independent observers classified motifs
based on visual inspection of the spectrogram and listening to the wave-
form. Repeated motifs were judged to be renditions of the same type only
when all four observers agreed on the classification. Motifs of the same
type were then considered to be identical for the purposes of the repeated
motif analyses. Variability of responses within sequences of repeated
motifs was measured by computing the coefficient of variation (CV) of
trial-averaged firing rates in response to each repeated motif sequence
presented to each neuron. The CV values for all sequences for a given
neuron were averaged to find the mean variability for that neuron.

Figure 3. Motif selectivity and information encoding in CLM and CMM neurons. a, Distributions of firing rates conditional on
motif identity for the CLM neuron (left) and CMM neuron (right) shown in Figure 2, a and b, respectively. Each row in each panel
shows the firing rate distribution for a single motif. Motifs are arranged in order of ascending mean firing rates and the conditional
probability is encoded in grayscale. b, Distribution of motif selectivity values for CLM (gray bars) and CMM (black line) neurons. Gray
arrow denotes mean for CLM neurons, black arrow denotes mean for CMM neurons. c, Distribution of motif information values for
CLM (gray bars) and CMM (black line) neurons. Arrows are as in b. d, Relation between mutual information and motif selectivity in
CLM (dots) and CMM (circles) neurons. CMM neurons tend to have either low motif selectivity or low mutual information, but not
both. CLM neurons can have both low motif selectivity and low mutual information.
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Statistics
All data were tested for normality using the Lilliefors test with p � 0.05.
Nonparametric tests were applied when data were not normal. Central
tendencies are reported as means � SEs, unless otherwise noted.

Results
To compare how learning affects neural encoding in CLM and
CMM, we began all experiments by training European starlings
(S. vulgaris) to recognize four different conspecific songs using an
established operant procedure (Fig. 1b) (Gentner and Margo-
liash, 2003). Birds learned to peck in response to one pair of songs
(rewarded songs) to obtain a food reward and to withhold pecks
to the other pair (unrewarded songs) to avoid a mild punishment
(Materials and Methods). After birds learned this task (Fig. 1c),
we analyzed the activity of single neurons (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material) in ei-
ther CLM (n 	 97 neurons) or CMM (n 	 48 neurons) (Fig. 1d)
in response to the rewarded and unrewarded training songs and
to two songs with which the birds had no prior experience (novel
songs) (Fig. 2; Materials and Methods).

The birds used for CLM recordings learned at similar rates
and ultimately reached similar levels of performance as the birds

used for CMM recordings. Song recognition performance (mea-
sured by d�; Materials and Methods) exceeded chance by a signif-
icant margin ( p � 0.01) after a mean of 814 � 100 trials in CLM
birds and a mean of 900 � 87 trials in CMM birds (Fig. 1c; t test,
p 	 0.55). CLM birds performed a mean of 22,639 � 8713 trials
and CMM birds performed a mean of 28,987 � 10,913 trials (t
test, p 	 0.65). By the end of training, both sets of birds recog-
nized the training songs with high accuracy (mean d’ over the last
500 trials: 2.68 � 0.20 in the CLM birds and 2.90 � 0.36 in the
CMM birds, t test, p 	 0.57). Thus all birds had learned to rec-
ognize all the training songs with high proficiency before the
neural recording.

Motif selectivity in CLM and CMM
We first sought to characterize functional differences between
neurons in CLM and CMM. Because starlings compose their
songs from stereotyped clusters of notes called motifs (Chaiken et
al., 1993) that are thought to be perceived as discrete auditory
objects (Gentner and Hulse, 2000; Gentner, 2008; Seeba and
Klump, 2009), we analyzed the neural responses to each motif. In
some CMM neurons, small subsets of motifs elicit high firing
rates, while many other motifs elicit low firing rates (Gentner and
Margoliash, 2003; Meliza et al., 2010), a characteristic known as
lifetime sparseness or nonparametric selectivity (Willmore and
Tolhurst, 2001; Lehky et al., 2005). Here we refer to this charac-
teristic as “motif selectivity,” and compare this measure between
the responses of neurons in CMM and CLM to the motifs that
made up all four training and the two novel songs. In the repre-
sentative CLM neuron shown in Figure 2a, a large number of
motifs elicited high firing rates. In the representative CMM neu-
ron (Fig. 2b), however, a smaller number of motifs elicited high
firing rates, while most motifs elicited low firing rates. Differences
in the distribution of each neuron’s firing rate response can be
directly compared between the sample CLM and CMM neurons
by rank-ordering the responses for each motif (Fig. 3a).

For each neuron in CLM and CMM, we computed the non-
parametric motif selectivity (Vinje and Gallant, 2000) (Materials
and Methods). This measure quantifies the relative extent of the
positive tail of the distribution of mean firing rates in response to
motifs (Franco et al., 2007). If all motifs elicited the same firing
rate, the motif selectivity would be 0; if only one motif elicited a
positive firing rate, the motif selectivity would be 1. The CLM
neuron in Figure 2a had a motif selectivity of 0.24, whereas the
CMM neuron in Figure 2b had a motif selectivity of 0.49. Al-
though both regions exhibited a large range of motif selectivity
values, we found that, on average, neurons in CMM had higher
motif selectivity values (0.40 � 0.04) than neurons in CLM
(0.26 � 0.02; Wilcoxon rank sum test, p 	 1.6 � 10
4; Fig. 3b).
These motif selectivity differences (and those observed using
other measures of selectivity; supplemental Fig. 2, available at
www.jneurosci.org as supplemental material) reflect the observa-
tions that CMM neurons responded with higher firing rates to a
smaller subset of motifs than CLM neurons.

Motif information encoding in CLM and CMM
Responding selectively to a small subset of motifs is one effective
way to encode information, but responding to many motifs can
also encode a substantial amount of information, provided the
response to each motif is distinct. Mutual information captures
all the differences between the responses to different motifs
(Cover and Thomas, 2006) and is thus agnostic to the actual
method of encoding. We computed mutual information between
firing rate and motif identity from the probability distribution of

Figure 4. Response variability of CLM and CMM responses to repeated motifs. a, Response of
an example CLM neuron to a single song illustrating response variability to repeated motifs.
Motif types are denoted as letters below the spectrograms. Motifs of the same type were judged
to be acoustically similar for the purposes of the response variability analysis (Materials and
Methods). b, Response of an example CMM neuron to the same song, as in a. c, Distribution of
mean CV across repeated motifs for all CLM (gray bars) and CMM (black line) neurons. Gray
arrow denotes mean for CLM neurons and black arrow denotes mean for CMM neurons. The CV
is computed from the firing rates across each sequence of repeated motifs and averaged for each
neuron. Higher CV values indicate greater response variability. Scale bar in upper spectrogram
denotes 0.5 s and 5 kHz. Scales are identical for both spectrograms.
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firing rate conditioned on motif identity
(Materials and Methods). The condi-
tional firing rate distributions of the rep-
resentative neurons from Figure 2 show
that the CMM neuron exhibited a greater
diversity of firing rates than the CLM neu-
ron, and that this diversity was more
closely tied to motif identity for the CMM
neuron than for the CLM neuron (Fig.
3a). Accordingly, the CMM neuron en-
coded 0.76 bits of information about mo-
tif identity, whereas the CLM neuron
encoded only 0.38 bits of information.
Across all neurons, we observed a broad
distribution of information values in both
CLM and CMM (Fig. 3c). On average,
neurons in CMM encoded significantly
more information (0.55 � 0.03 bits)
about motif identity than neurons in
CLM (0.38 � 0.02 bits; Wilcoxon rank
sum test, p 	 3.5 � 10
5; Fig. 3c).

In both CLM and CMM, high motif
selectivity and high motif information did
not coexist in the same neurons (Fig. 3d).
This is expected because each of these
measures mutually constrains the other.
Motif selectivity measures the distinctness
of a neuron’s response to a small number
of motifs, while mutual information mea-
sures the diversity of a neuron’s response
to many motifs. The response of a highly
selective neuron can effectively distin-
guish between a small number of motifs,
yet has little ability to distinguish between
the majority of motifs. High motif selec-
tivity thus constrains the amount of infor-
mation that can be conveyed about the
whole set of motifs. Similarly, neurons
that encode a large amount of informa-
tion must necessarily respond to many
motifs, but in a manner that maps differ-
ent responses to different motifs. The
populations of neurons from both CLM
and CMM range from low motif selectiv-
ity but high information, to high motif
selectivity but low information (Fig. 3d).
This pattern suggests that neurons in both
regions possess a continuum of sensory
encoding properties. In addition, because
CMM contains fewer neurons with both lower motif selectivity
and lower information values than CLM (Fig. 3d), CMM neurons
encode motifs in a manner that is closer to the constraints set by
information and selectivity.

Responses to repeated motifs in CLM and CMM
Over the course of a song, starlings typically sing multiple rendi-
tions of one type of motif before switching to a different type of
motif (Eens, 1997). We examined whether CLM and CMM neu-
rons elicited variable responses to repeated motifs of the same
type. Evidence of such variable responses was found in both re-
gions. The responses of the representative CLM and CMM neu-
rons in Figure 4, a and b, change across each rendition of the
repeated motif types in the sequence. To quantify this observa-

tion, we computed the CV of mean firing rates in response to each
motif within a repeated sequence (see Materials and Methods).
For the sample CLM neuron in Figure 4a, CV values were 0.40,
0.22, and 0.30 for motif types A–C, respectively. For the sample
CMM neuron in Figure 4b, CV values were 0.54, 1.15, and 0.65,
for motif types A–C, respectively. We observed instances of firing
rates increasing over motif repetitions (e.g., motif type A in Fig.
4a), as well as instances of firing rates decreasing over motif rep-
etitions (e.g., motif type C in Fig. 4b). We computed a measure of
each neuron’s overall variability to repeated motifs by averaging
all the CV values for each sequence of repeated motifs presented
to that neuron. On average, the neurons in CMM had higher
mean CV values (0.40 � 0.03) than the neurons in CLM (0.32 �
0.02; Wilcoxon rank-sum test, p 	 0.0040; Fig. 4c). These results

Figure 5. Effects of learning on encoding of motif identity in CLM. a, Distributions of firing rates conditional on motif identity for
rewarded (left), unrewarded (middle) and novel (right) motifs for the neuron shown in Figure 2a. Each row in each panel shows the
firing rate distribution for a single motif. Motifs are arranged in order of ascending mean firing rates and the conditional probability
is encoded in grayscale. The firing rates of this neuron allow greater disambiguation of motif identity for rewarded motifs than for
novel motifs. b, Comparison of mean (�SEM) mutual information across all CLM neurons for rewarded, unrewarded, and novel
motifs. Wilcoxon signed-rank test: *p � 0.01; **p � 10 
5. c, Scatter plot illustrating distributions of information values for novel
motifs and rewarded motifs. Each point represents a single neuron. Upper right, histogram of differences between mutual infor-
mation values for rewarded vs novel motifs for all neurons. The arrow denotes the mean. d, Mean (�SEM) total entropy (squares)
and noise entropy (circles) values over all CLM neurons. Paired t test: *p � 0.01; **p � 0.005.
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suggest that responses of neurons in CMM are more variable
within a motif type than are responses of neurons in CLM. To-
gether, the results of motif selectivity, mutual information, and
variability analyses indicate that song-evoked neuronal responses
increase in complexity between CLM and CMM.

Learning increases information encoded about motifs in CLM
One way in which learning might act on CLM neurons is to
modify their encoding of individual motifs. To test this idea, we
compared the responses of CLM neurons to the motifs that were
paired with reward during training (rewarded motifs), the motifs
not paired with reward during training (unrewarded motifs), and
the motifs not used for training (novel motifs). In the represen-
tative CLM neuron in Figure 2a, neural activity was more variable

among the rewarded motifs than among
the unrewarded or novel motifs. We
quantified these differences by computing
the mutual information for firing rate and
motif identity separately for each class of
motifs (Materials and Methods). The
strength of the association between firing
rates and motif identity within each stim-
ulus class corresponds directly to the
amount of information each neuron en-
codes about the motifs in that class. The
conditional probability distributions of
firing rates for each set of motifs presented
to the example neuron (Fig. 5a) shows
that the firing rate diversity was more
closely tied to motif identity for familiar
motifs than between the unrewarded or
novel motifs. Accordingly, this neuron
encoded more information about re-
warded motifs (0.66 bits) than about un-
rewarded motifs (0.16 bits) and novel
motifs (0.26 bits).

Across the population of CLM neu-
rons, learning significantly increased the
amount of information encoded by indi-
vidual neurons (Friedman test, p 	 1.7 �
10
4). The mean information encoded
about rewarded motifs was 34.5% higher
than that for novel motifs (Wilcoxon
signed-rank test, p 	 1.6 � 10
5; Fig.
5b,c). This learning effect was observed in
most neurons: 69 of 97 neurons (71%) en-
coded more information about rewarded
motifs than novel motifs (� 2 test: p 	
0.0001; Fig. 5c). The mean information
encoded about unrewarded motifs was
comparable to that for novel motifs (Wil-
coxon signed-rank test, p 	 0.091; Fig.
5c). The proportion of neurons encoding
more information about unrewarded mo-
tifs than about novel motifs was not
greater than that expected by chance (56/
97; � 2 test, p 	 0.13). Thus, the associa-
tion of songs with reward was necessary to
induce significant changes in encoding by
single CLM neurons.

The observed effects of learning on
information encoding could arise from
two forms of firing rate variability. First,

the diversity of responses to all motifs (“the total entropy”)
could increase, which could potentially allow for a greater
number of motifs to be represented. Second, the diversity of
responses to repeated presentations of the same motif (“the
noise entropy”) could decrease, which could allow for greater
discriminatory power between responses to different motifs
(Strong et al., 1998). Across all CLM neurons, learning in-
creased the total entropy (repeated-measures ANOVA, p 	
2.1 � 10 
4), but had no effect on the noise entropy (repeated-
measures ANOVA, p 	 0.13; Fig. 5d). Learned motifs thus
elicited a greater diversity of responses than novel motifs with-
out compromising the reliability of responses, which in-
creased the capacity of CLM neurons to convey information
about learned stimuli.

Figure 6. Effects of learning on encoding of motif identity in CMM. a, Distributions of firing rates conditional on motif identity
for rewarded (left), unrewarded (middle) and novel (right) motifs for the neuron shown in Figure 2b. Conventions are the same as
in Figure 5a. b, Comparison of mean (�SEM) mutual information across all CMM neurons for rewarded, unrewarded, and novel
motifs. Wilcoxon signed-rank test: *p � 0.05. c, Scatter plot illustrating distributions of information values for novel motifs and
rewarded motifs. Each point represents a single neuron. Upper right, histogram of differences between mutual information values
for rewarded vs novel motifs for all neurons. The arrow denotes the mean. d, Mean (�SEM) total entropy (squares) and noise
entropy (circles) values for all CMM neurons. Paired t test: *p � 0.05.
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We then asked what drives the increase in the total entropy of
the neural response distribution. In principle, this change may be
due to an increase in the total range of responses or to an increase
in the number of distinct spike rates observed within a fixed
range. Across all CLM neurons, we observed a slightly larger
range of firing rates for rewarded motifs (16.5 � 0.9 Hz) than for
unrewarded (16.2 � 0.8 Hz) or novel motifs (15.2 � 0.9 Hz;
Friedman test: p 	 0.005). This increased range, however, did not
fully account for the increased information encoding. The main
effect of learning was unaltered in a control analysis where we
omitted any response that fell outside the range of firing rates
elicited by the novel motifs (supplemental Fig. 4, available at
www.jneurosci.org as supplemental material). Learning, there-
fore, increased the amount of information encoded by CLM neu-
rons primarily by increasing the effectiveness with which this
range was used.

Learning increases information encoded about motifs
in CMM
Because of the substantial effects of learning on motif encoding in
CLM, we next investigated whether learning also modified infor-
mation encoding about individual motifs in CMM. Figure 6a
shows the conditional probability distributions of firing rates for
each set of motifs presented to the CMM neuron illustrated in
Figure 2b. As with most CLM neurons, the diversity in this CMM
neuron’s firing rates was more closely tied to rewarded motifs
than to unrewarded or novel motifs. Accordingly, this neuron
encoded more information about rewarded motifs (0.91 bits)
than about unrewarded motifs (0.60 bits) and novel motifs (0.09
bits). Over our entire sample, learning significantly modulated
the information encoded by CMM neurons (repeated-measures
ANOVA, p 	 0.016; Fig. 6b,c). The mean amount of information
encoded about rewarded motifs was 27.7% higher than that for
novel motifs (paired t test, p 	 0.012; Fig. 6c). Like CLM, the
information encoded about unrewarded motifs was comparable
to that encoded about novel motifs (paired t test, p 	 0.41).
Although CMM encoded more information than CLM on aver-
age (Fig. 3c), the effects of learning on neural encoding in both
regions were comparable (mixed model ANOVA, interaction
term, p 	 0.65).

Across all CMM neurons, learning increased the total entropy
(repeated-measures ANOVA, p 	 0.019), but had no significant
effect on the noise entropy (Friedman test, p 	 0.09; Fig. 6d).
Therefore, as in CLM neurons, learned motifs elicited a greater
diversity of responses than novel motifs in CMM neurons, but
this greater diversity did not substantially decrease the reliability
of responses. We observed no significant learning-dependent in-
crease in the range of firing rates evoked by single motifs
(repeated-measures ANOVA, p 	 0.08). Thus, learning and re-
ward enhanced neural encoding of motifs in similar ways in both
CLM and CMM. In both regions, the effect of learning on infor-
mation encoding was not dependent on our assumption that
responses to repeated motifs are independent (Materials and
Methods); similar differences were observed when repeated mo-
tifs are considered to be identical in the mutual information anal-
ysis (supplemental Fig. 5, available at www.jneurosci.org as
supplemental material).

Learning increases information encoded about
motif categories
In addition to encoding more information about the identity of
learned motifs than about novel motifs, CLM and CMM might
also specifically encode information about the behaviorally rele-

vant categories for motifs acquired through training (i.e., re-
warded, unrewarded, and novel). Such encoding could appear as
any consistent difference in responses to motifs from different
categories and thus is distinct from the foregoing analysis of in-
formation about motif identity. To explore this possibility, we
formed firing rate distributions from responses to all motifs from
these three categories (Fig. 7a). From these distributions, we
computed the information encoded by single neurons in CLM
and CMM about the behaviorally defined category of each motif.
Because the behaviorally defined categories are just one way that
groups of motifs might be represented, we compared the infor-
mation about learned categories to the distribution of informa-
tion values when the category membership of each motif was
randomly shuffled into other groupings (Materials and Meth-
ods). The example CMM neuron depicted in Figure 7a,b encoded
0.22 bits of information about motif category and only 0.03 �
0.03 (mean � SD) bits about the randomly shuffled categories.
Because different motifs can elicit very different firing rates in the
same neuron, the information about motif category is small rel-
ative to information about motif identity. Nonetheless, the infor-

a

b

c

d

Figure 7. Effects of learning on encoding of motif category in CLM and CMM. a, Probability
distribution for the sample CMM neuron depicted in Figure 2b of firing rates in response to
motifs, conditional on behavioral category. Probability is encoded in grayscale. b, Probability
distribution of the same CMM neuron conditional on a randomly shuffled set of categories.
Probability is encoded in grayscale. c, Comparison of information encoded about the learned
motif categories (rewarded, unrewarded, novel), and the mean information encoded about 100
permutations of randomly shuffled categories for all CLM (gray dots) and CMM (open circles)
neurons. Black line is the unity line. d, Distributions of information about motif category en-
coded by CLM neurons (gray bars) and CMM neurons (black outline). Arrows denote means for
CLM (gray) and CMM (black).
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mation about learned categories was significantly greater than the
information about shuffled categories (evaluated at p � 0.05) in
45.8% (22/48) of CMM neurons and in 28.9% (28/97) of CLM
neurons. These proportions are larger than would be expected by
chance. On average, the information about behaviorally relevant
categories of motifs was larger than the mean information about
shuffled categories for neurons in both CLM (0.023 � 0.002 bits
vs 0.014 � 0.001 bits; Wilcoxon signed rank test, CLM: p 	 7.3 �
10
8; Fig. 7b) and CMM (0.072 � 0.009 bits vs 0.023 � 0.002
bits; Wilcoxon signed rank test, p 	 1.2 � 10
8; Fig. 7c). Corre-
spondingly, neurons in CMM encoded significantly more infor-
mation about behaviorally relevant categories than neurons in
CLM on average (Wilcoxon rank sum test: p 	 1.95 � 10
7; Fig.
7d). Thus, while both CLM and CMM encode information about
the learned motif categories, neurons in CMM encode signifi-
cantly more of this information than neurons in CLM.

Learning increases information
encoded about song categories
Because the firing rate of CLM and CMM
neurons typically varies substantially over
the motifs within a song (e.g., Fig. 2) while
the behavioral category (i.e., rewarded,
unrewarded, or novel) remains un-
changed, we reasoned that the firing rate
averaged over the course of the song
may better represent the behavioral cat-
egory. As for motifs, we formed firing
rate distributions from responses to
each song from the three behavioral cat-
egories as well as for all permutations of
shuffled categories (Fig. 8a; Materials
and Methods). From these distribu-
tions, we computed the information en-
coded by single neurons in CLM and
CMM about the learned categories and
shuffled categories. Because there are
only two songs per category, there are
only eight distinct permutations in
which all categories are shuffled. Thus,
we compared the information about the
learned categories with the information
about the shuffled set of categories that
encoded the maximum information.
The example CMM neuron depicted in
Figure 8a encoded 0.99 bits of informa-
tion about song category and a maxi-
mum of 0.68 bits about randomly
shuffled categories. We found that the
information about learned categories
was significantly greater than the maxi-
mum information about shuffled cate-
gories in 37.5% (18/48) of CMM
neurons but in only 22.7% (22/97) of
CLM neurons. These percentages reflect
significant differences between the pop-
ulations of CLM and CMM neurons. In
CMM, on average, information about
the song category (0.42 � 0.04 bits) was
significantly greater than the mean in-
formation about shuffled categories
(0.28 � 0.03 bits; paired t test: 4.7 �
10 
4; Fig. 8c) In CLM, in contrast, in-
formation about the song category

(0.19 � 0.03 bits) was similar to the mean information about
shuffled categories (0.17 � 0.02 bits; paired t test: p 	 0.11;
Fig. 8c). Correspondingly, neurons in CMM encoded more
category information than neurons in CLM on average (Wil-
coxon rank sum test: p 	 7.4 � 10 
7; Fig. 8d). This difference
can also be observed by comparing the mean firing rates be-
tween the rewarded and novel songs (Fig. 8e) and between the
rewarded and unrewarded songs (Fig. 8f ). The average firing
rate differences were slightly greater in CMM than in CLM,
but the variance of these differences was much greater in
CMM than in CLM (� 2 variance test: rewarded vs novel, p 	
2.1 � 10 
11; rewarded vs unrewarded, p 	 2.3 � 10 
4).
Learning therefore strongly modulates (by either increasing or
decreasing) the average firing rate responses of CMM neurons
to enhance the encoding of song category, but such modula-
tion is much less pronounced in CLM neurons.

Figure 8. Effects of learning on encoding of song category in CLM and CMM. a, Probability distributions of firing rates in
response to songs for the sample CMM neuron depicted in Figure 2b, conditional on song identity (left) and behavioral category
(right). Rew. denotes rewarded songs and unrew. denotes unrewarded songs. Arrows depict the construction of category-
conditional distributions. b, Probability distributions as in a but for the randomly shuffled (Shuf.) category with the highest
information. c, Comparison of information encoded about the learned categories (rewarded, unrewarded, novel), and the mean
information about randomly shuffled categories for all CLM (gray dots) and CMM (open circles) neurons. Black line is the unity line.
d, Distributions of category information values for CLM neurons (gray bars) and CMM neurons (black outline). Arrows denote
means for CLM (gray) and CMM (black). e, Distribution of the change in average firing rate between novel songs and rewarded
songs for CLM neurons (gray bars) and CMM neurons (black outline). Positive values indicate higher firing rates for rewarded songs.
Arrows denote means for CLM (gray) and CMM (black). f, Distribution of the change in average firing rate between unrewarded
songs and rewarded songs for CLM neurons (gray bars) and CMM neurons (black outline). Positive values indicate higher firing rates
for rewarded songs. Arrows are as in e.
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Discussion
The complex (Meliza et al., 2010), learning-dependent encoding
of song by CMM neurons (Gentner and Margoliash, 2003) sug-
gests that these representations are the product of an extensive
neural processing network. Our results reveal some of the func-
tional characteristics of that network by highlighting multiple
differences between the encoding properties of individual CLM
and CMM neurons, and by demonstrating that learning modifies
these encoding properties. Together, these results suggest that
CLM and CMM are part of a functional sensory circuit across
which representations of natural vocal signals become increas-
ingly informative with respect to behavior.

Coding along the avian auditory processing pathway
CLM and CMM sit near the top of a sensory processing pathway
along which neural responses get progressively more complex.
Within field L, neurons in the L1 and L3 subregions selectively
encode species-specific vocalizations more than neurons in the
thalamorecipient field L2 (Bonke et al., 1979; Langner et al.,
1981). Linear spectrotemporal receptive field (STRF) models of
neurons in field L2a predict neural responses substantially better
than the same models for neurons in CLM, indicating that re-
sponse nonlinearities increase from L2a to CLM (Sen et al., 2001).
Nonlinear stimulus transformations, such as the spectrotempo-
ral “surprise,” substantially improve the predictive power of
STRF models for CLM neurons, but only moderately for field L
neurons, again highlighting the increase in nonlinear processing
between CLM and field L (Gill et al., 2008). In addition, some
neurons in CLM show a moderate preference to respond to the
bird’s own song over other conspecific songs (Bauer et al., 2008),
a hallmark of neural complexity (Margoliash, 1983) not observed
in field L (Amin et al., 2004; Shaevitz and Theunissen, 2007).

The differences in neural processing between CLM and CMM
resemble those within known hierarchical circuits. First, neurons
in CMM have higher motif selectivity than neurons in CLM.
Selectivity often increases along ascending hierarchical circuits,
including pathways in the visual (Maunsell and Newsome, 1987;
Rust and DiCarlo, 2010) and auditory (Janata and Margoliash,
1999; Kikuchi et al., 2010) systems. Second, neurons in CMM
encode more information about motif identity than neurons in
CLM. In many sensory processing pathways, neurons at higher
levels encode abstract concepts such as object identity whereas
neurons at lower levels process the physical components of those
objects (Nelken, 2004; Winer et al., 2005; Chechik et al., 2006;
Nahum et al., 2008; Russ et al., 2008). Like visual objects, motifs
are high-level concepts that are abstracted from the physical com-
binations of sounds from which they are composed (Gentner and
Hulse, 2000; Gentner, 2008; Seeba and Klump, 2009). Third, neu-
rons in CMM exhibit more variability in their responses to re-
peated motifs of the same type than CLM neurons. Because these
repeated motifs have subtle acoustic differences and different
positions within the song, we cannot attribute the increased sen-
sitivity of CMM neurons exclusively to either feature. Nonethe-
less, sensitivity to subtle differences in complex stimuli, such as
faces, is a hallmark of responses at high levels in known hierar-
chical circuits (Desimone et al., 1984), and sensitivity to temporal
context increases between the auditory thalamus and auditory
cortex in mammals (Asari and Zador, 2009). Collectively, all
three of these coding differences—motif selectivity, information,
and variability across motif renditions—suggest that neural rep-
resentations in CMM are more complex than in CLM, and thus
support the hypothesis that CLM and CMM are a part of a func-
tional hierarchical neural circuit.

Even with the evidence provided here, there are several reasons to
be cautious of drawing too strict a conclusion about hierarchical
processing across CLM and CMM. First, connectivity between the
two regions is reciprocal (Vates et al., 1996), which could make the
precise flow of information multifaceted and complex (but does not
necessarily preclude hierarchical processing; Van Essen et al., 1992).
Second, CMM shares a strong reciprocal connection with NCM,
another secondary auditory forebrain region that receives input
from field L (Vates et al., 1996). Responses of NCM neurons are also
modified by song-recognition learning (Thompson and Gentner,
2010), and thus may also contribute directly to the emergence of
complex, learning-dependent responses in CMM. Finally, the re-
sponse properties of neurons in both CLM and CMM are heteroge-
neous and partially overlapping, suggesting that multiple pathways
of information flow may be present. Regardless of the specific un-
derlying architecture, however, our data show significant functional
differences between CLM and CMM.

Learning modifies information encoding in CLM and CMM
Our results suggest that learning acts on CLM and CMM neurons in
at least two ways: by increasing the information about motif identity
and by increasing the information about behaviorally defined song
categories. We found that both CLM and CMM neurons encoded
more information about the identity of the learned motifs than
about the identity of novel motifs. Behavioral experiments suggest
that starlings recognize conspecifics by memorizing the motifs that
compose their repertoires (Gentner and Hulse, 2000). The preferen-
tial encoding of the learned motifs by neurons in CLM and CMM
may be a part of this stored memory. Alternatively, because of the
rich acoustical structure of starling songs, identification could be
achieved by learning a subset of the motifs that the bird finds partic-
ularly useful for recognition. The additional information encoded by
CLM and CMM neurons about the learned motifs may therefore
reflect changes in the representations of the most useful motifs. Con-
sistent with this, the strongest effects of learning occur for the motifs
paired with reward during training (Figs. 5, 6) (Gentner and Margo-
liash, 2003), pointing to a role for positive reinforcement in shaping
the neural codes in both regions. Similar effects have been reported
in primary cortical areas in mammals (Blake et al., 2006; Polley et al.,
2006). Because learning increases the information encoded about
motifs similarly in CLM and CMM, at least some of the learning-
dependent representations in CMM (Gentner and Margoliash,
2003) may be inherited from responses in CLM.

Neurons in CLM and CMM also encoded information about
the learned behavioral categories and this information was sub-
stantially larger in CMM than in CLM. Given that each bird’s task
was to distinguish between rewarded and unrewarded songs, we
hypothesize that neural activity in both regions contributes to
this cognitive process and supports categorical processing in
postsynaptic targets (Prather et al., 2009). Phenomenologically,
our results are similar to the processing of learned categories
along the primate dorsal and ventral visual pathways (Freedman
et al., 2001, 2003; Freedman and Assad, 2006). The neural encod-
ing of behaviorally relevant categories (i.e., the grouping of sig-
nals that share behavioral meanings with similar neural
representations) may be a general adaptive principle of cortical
sensory processing to organize the complexity of sensory input
(Merzenich and deCharms, 1996; Freedman and Miller, 2008;
Hoffman and Logothetis, 2009; Seger and Miller, 2010). To date,
however, the behavioral modulation of categorical processing has
been studied primarily in the primate visual system and the un-
derlying circuitry remains poorly understood. The emergence of
categorical representations between CLM and CMM provides an
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excellent opportunity to study the encoding of natural acoustic
categories at the cellular and circuit level.

Multiple pathways are likely to be involved in the transforma-
tion of information between CLM and CMM. For example, be-
cause CLM neurons encode relatively small amounts of
information about learned categories, a single CMM neuron that
processes convergent input from many CLM neurons could am-
plify this effect substantially. Recent results that the responses of
some CMM neurons to whole motifs are well modeled by a com-
bination of the responses to motif components (Meliza et al.,
2010) are consistent with a general pattern of convergence into
CMM. Furthermore, synaptic input from NCM neurons, which
elicit weaker responses to learned songs than to novel songs
(Thompson and Gentner, 2010), likely contributes to the encod-
ing of learned categories in CMM. Because CMM contains large
numbers of GABAA-positive neurons (Pinaud et al., 2004), sig-
nals from NCM may specifically suppress the activity in CMM for
novel songs. Additional studies will be necessary to compare the
roles of CLM and NCM in shaping CMM responses.

This circuit will also be highly valuable for tracking changes in
neural encoding over the course of learning, which is extremely
difficult to do in primate models because of the large amounts of
time required to train monkeys (Hoffman and Logothetis, 2009;
cf. Messinger et al., 2001). In contrast, starlings can learn to rec-
ognize songs very quickly (our unpublished observations). With
awake, behaving recording techniques, the modification of neu-
ral responses to encode newly learned categories could be readily
observed. Thus, our identification of the emergence of behavior-
ally relevant information about songs along the CLM to CMM
pathway highlights it as an especially valuable model for studying
the circuit and plasticity mechanisms that underlie the selective
neural processing of learned signals.
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