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The analysis of natural images with independent component analysis
(ICA) yields localized bandpass Gabor-type filters similar to receptive
fields of simple cells in visual cortex. We applied ICA on a subset
of patches called position-centered patches, selected for forming a
translation-invariant representation of small patches. The resulting
filters were qualitatively different in two respects. One novel feature was
the emergence of filters we call double-Gabor filters. In contrast to Gabor
functions that are modulated in one direction, double-Gabor filters
are sinusoidally modulated in two orthogonal directions. In addition
the filters were more extended in space and frequency compared to
standard ICA filters and better matched the distribution in experimental
recordings from neurons in primary visual cortex. We further found a
dual role for double-Gabor filters as edge and texture detectors, which
could have engineering applications.

1 Introduction

Neurons in the early visual areas may reduce redundancy in natural images
by generating neural responses that are statistically independent (Barlow,
1961; Simoncelli & Olshausen, 2001). Consistent with this principle, inde-
pendent component analysis (ICA) of natural images (Jutten & Hérault,
1991; Comon, 1994; Bell & Sejnowski, 1995, 1997; Hyvarinen, Karhunen, &
Oja, 2001) yields localized bandpass filters that match qualitatively with the
properties of simple cells in V1 (Olshausen & Field, 1996, 1997). Therefore
one possible function of simple cells in V1 is to reduce the redundancy
of natural images. Higher in the hierarchy of visual processing, neurons
respond more and more invariantly to translation, rotation, and scaling,
while responding to more complex features of inputs.
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Figure 1: The equivalence class of translation for a cartoon patch. The position-
centered representative patch is shown on the left.

Here we focus on translation. Our goal is find a translation-invariant
representation of the inputs, and the filters that capture their translation-
invariant features. We apply ICA on a subset of patches, forming a
translation-invariant representation of small patches. This is formulated by
defining the equivalence class of translation—a set obtained by translating
a patch by all possible translations. We call these patches position-centered
because the intensity-weighted sum of pixel locations is at the center of the
patch. Patches that are not in the same equivalence class cannot be mapped
to each other by any translation. The position-centered patches are too small
to represent objects and are more tuned to texture features.

Our main result is the emergence of a new class of filters that we call
double-Gabor filters, characterized by their signature modulation in two
directions, in addition to Gabor filters, which are much more extended in
both space and spatial frequency compared to the standard ICA results,
close to the distribution found in populations of V1 cells.

2 Position-Centered Patches

Our patch selection is based on defining an equivalence class of transla-
tion for an image patch, a set obtained by jointly translating the pixels in
the patch by all possible translations. Different elements in this set would
correspond to different translation vectors. The basic idea is to pick a repre-
sentative patch in the equivalence class and perform ICA on the ensemble
of those representative patches. The learning algorithm thus picks up the
translation-invariant features of the inputs. The translation of patches is
done on a torus, that is, modulo the image patch sizes. Therefore, the pixel
(R1, R2), where Ri is the coordinate along the direction i, translated by
T = (T1, T2), is moved to (R′

1, R′
2) = (mod(R1 + T1, a1), mod(R2 + T2, a2)).

Here, a1 and a2 are the patch size along the two directions. As an example,
some elements of the equivalence class of translation for a cartoon patch
are shown in Figure 1.
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Figure 2: Edge effects from centering a patch. The left patch is not position-
centered, but the right one is after translation on a torus. Edge effects are created
since the translation is defined modulo the patch sizes.

The next step is to define a measure for an image patch that would
characterize where most of the intensity in the patch is located. This measure
would give us a systematic way to pick the representative image patch from
the equivalence class of translation. The simplest measure that takes into
account the intensity of an image patch for all pixels is given by

R =
∑

I(R)R∑
I(R)

, (2.1)

where I(R) is the intensity of the image patch at location R. We call R the
center of intensity, named after the center of mass in physics.

We take R = 0 to be the center of the patch. R = 0 patches are there-
fore called position-centered. Of course, for a finite patch, R = 0 is highly
unlikely. We therefore relax the definition of a position-centered patch to
|R| < ε, where ε is some small number in units of a pixel.

Position-centered patches cannot be mapped into each other by any
translation, thus forming a translation-invariant representation of small
patches. In this way, ICA learns features of the translation-invariant repre-
sentation of inputs. However, centering a patch by the translation defined
above might create an edge effect; an example is given in Figure 2. One way
to avoid an edge effect is to enlarge the patch and find a way to smooth
out the edges in the large patch. However, ICA would slow dramatically
for very large patches. Instead, we searched (at random) for patches that
were already position centered and thus created an ensemble of position-
centered patches that were free of edge effects. An example of some of the
position-centered patches found randomly is given in Figure 3. In the next
section, we outline the ICA results on position-centered patches selected at
random from the van Hateren database of natural images (van Hateren &
van der Schaaf, 1998).
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Figure 3: (a) Example of position-centered 21 × 21 patches, randomly selected
by sampling 104 patches, for an image in van Hateren database of natural
images. The database consists of 4167 images, 1024 × 1536 pixels in size, ranging
from 0 to 32,767 in pixel intensity. The position-centered patches are selected
with the criterion |R| < 0.05 in units of a pixel. A property of position-centered
patches in the display here is that they are more tuned to texture features,
mostly selecting patches from the grass and patches from sky and the roof
despite being a small portion of the image, and avoiding the cows in this image.
(b) Labeled patches in panel a are shown in isolation with their corresponding
labels. The color map is from the minimum to the maximum of each patch
separately.

3 Results: Translation-Invariant ICA filters

ICA is an unsupervised learning method with the goal of finding linear
filters that make the linearly transformed inputs independent, thus re-
moving correlations in all orders (Bell & Sejnowski, 1995). Early sensory
areas could employ an ICA-type principle in transforming their inputs as a
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nonredundant representation is more more efficient use of the brain’s en-
ergy resources (Barlow, 1961, 1989).

The input vector is denoted by a vector of rank n, xT = [x1, x2, . . . , xn],
and the linearly transformed output is given by y = WTx. The matrix W can
be written by its rank n columns wi as W = [w1 w2 . . . wm], where m is the
rank of the output vector y. For simplicity we assume the outputs to be the
same size as the inputs, m = n. The goal of the ICA is to learn W that makes
yi = wT

i x independent of yj for i �= j: 〈yiy
p
j 〉 ∝ δi j, where p is any positive

integer, δ is the Kronecker delta function, and 〈 〉 denotes the statistical
average over the input ensemble. This can be achieved by demanding

〈y f (y)T〉 = I, (3.1)

where I is the identity matrix and f is a strongly nonlinear function. The
appropriate f depends on the probability distribution of inputs, but it is
always sigmoid-like (Bell & Sejnowski, 1995; Laughlin, 1981).

The infomax ICA achieves independence (see equation 3.1) by the gra-
dient ascent, looking for saddle points �W = 0 by updating W (Amari,
Cichocki, & Yang, 1996):

�W = η W(I − 〈y f (y)T〉), (3.2)

where η is the learning rate. This method applied on 21 × 21 patches from
the van Hateren database of natural images (van Hateren & van der Schaaf,
1998) yields the filters shown in Figure 4. To speed up the learning, info-
max ICA is usually applied on whitened data, in which the second-order
correlations are removed. The linear transformation applied in whitening
the data can be easily reversed. In practice, the filters learned on whitened
data and the ones transformed by the inverse transformation are very simi-
lar, indicative of the importance of higher-order correlations in capturing
the statistics of the data. We also checked the robustness of the ICA re-
sults from position-centered patches by applying a gaussian low-pass filter
on the inputs. The filter was constructed by Matlab’s routine fspecial

(‘gaussian’), with the default window of 3 × 3 and σ = 0.5. In practice,
the true independence ∀p, 〈yiy

p
j 〉 ∝ δi j is only partially achieved for natu-

ral signals (Simoncelli & Olshausen, 2001). We chose f to be the logistic
function f (y) = 1/(1 + exp(−y)), which is related to tanh, the conventional
choice in the literature, through the relation tanh(y) = −1 + 2 f (2y). ICA
results are robust to this choice since the constant −1 drops out in averag-
ing preprocessed signals with 〈y〉 = 0. To quantify this, denote δW as the
the difference between two consecutive W after a 106 iteration process and
dW = Wtanh − W as the difference between converged ICA filters for the
two nonlinearities. In the conventional ICA applied on random patches,
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Figure 4: Conventional ICA results found by applying the infomax ICA algo-
rithm on 21 × 21 patches taken from van Hateren’s database of natural images.

std(δW ) = 0.0075, std(dW ) = 0.0076, which demonstrates the equivalence
of the two nonlinearities as far as converged W is concerned.

To find the translation-invariant features of inputs, we apply the infomax
algorithm on the ensemble of position-centered patches. They are given
in Figure 5. In this case, std(δW ) = 0.0060, std(dW ) = 0.0058. In the next
section, we elaborate on the qualitative differences and the emergence of
new types of filters compared to conventional ICA results.

4 Emergence of Double-Gabor Filters

As is well known, the independent features of natural images are localized
bandpass filters (Bell & Sejnowski, 1997) and are well characterized by
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Figure 5: ICA filters trained on 21 × 21 position-centered patches from van
Hateren’s database of natural images. Our criterion for a position-centered
patch here was |R| < 0.05 in units of a pixel. There were more than 2.8 × 106

patches in our training set. The filters are separated into three groups: the upper
box contains filters that are better fit with a Gabor filter, the bottom box contains
double-Gabor filters, and the ones in the middle did not satisfy the criterion of
adjusted coefficient of determination R2 greater than 0.98 (see Figure 10).

Gabor functions:

G(x, y) = A exp
(
−γ 2

x x′2/2 − γ 2
y y′2/2

)
cos

(
kxx′ + φx

)
, (4.1)

x′ = (x − x0) cos θ + (y − y0) sin θ, (4.2)

y′ =−(x − x0) sin θ + (y − y0) cos θ, (4.3)
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Figure 6: Examples of Gabor filters from ICA trained on position-centered
patches. They are much more extended in space and wavelength than the con-
ventional ICA results (see Figure 4).

Figure 7: Examples of the double-Gabor filters from ICA trained on position-
centered patches. Their signature is modulation in two perpendicular directions.

where θ is the orientation of the axis x′, y′ compared to x, y; 1/γx, 1/γy is
a measure for the extension of the localization and x0, y0 its location. The
parameters kx and φx give the wave vector (spatial frequency) and the phase
of sinusoidal modulation, and A is the normalization factor. An example of
a Gabor function is given in Figure 9a. We fit the ICA results of Figure 4 with
the Gabor functions and find the histogram of Gabor parameters obtained
by the fit. The results are given in Figure 8. The filters are localized in space
with γx and γy close to 1. In addition, most filters have spatial-frequency kx
close to 1/2.

ICA filters trained on position-centered patches can be categorized into
two groups; examples are given in Figures 6 and 7. The examples in Figure 6
are fit by Gabor filters, noting that they are much more extended in both
space and wavelength as compared to Figure 4. The second group, in
Figure 7, however, cannot be fit by Gabor functions as they modulate in
two directions. Since the two modulations appear orthogonal, we extend the
definition of Gabor functions by multiplying them with another cosine in
the perpendicular direction, thus adding two more parameters to the Gabor
functions. We call this new class of functions double-Gabor functions:

D(x, y) = A exp
(− γ 2

x x′2/2 − γ 2
y y′2/2

)
cos

(
kxx′ + φx

)
cos

(
kyy′ + φy

)
,

(4.4)

where the definitions of x′ and y′ are the same as before (see equations 4.2
and 4.3). An example of a double-Gabor function is given in Figure 9b with
a Gabor function.
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Figure 8: Histogram of the Gabor parameters fit to the conventional ICA filters
from Figure 4. Spatial frequency ky and phase φy are defined in equation 4.4.
Gabor functions correspond to ky = φy = 0. We chose Gabor fits with an ad-
justed coefficient of determination R2 greater than 0.98; 404 filters satisfied that
criterion.

We then find the best fit for the ICA filters of Figure 5 to either Gabor
or double-Gabor functions. The histograms for the parameters from fits to
Gabor and double-Gabor filters are given in Figures 11 and 12 respectively.
We chose fits with an adjusted coefficient of determination R2 bigger than
0.98, and our criterion for choosing between Gabor and double-Gabor filters
was a better goodness-of-fit measure: 250 filters were fit by Gabor filters and
144 filters by double-Gabor filters. Figure 10 shows the decision boundary
in the scatter plot of adjusted R2 for Gabor and double-Gabor filters. The
double-Gabor filters close to the line could as well be classified as Gabor
filters if the decision boundary were slightly shifted. However, there are
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Figure 9: (a) An example of a Gabor function with parameters A = 1, γx =
0.6, γy = 0.3, kx = 0.4. (b) An example of a double-Gabor function with param-
eters A = 1, γx = 0.6, γy = 0.3, kx = 0.4, ky = 0.1. The parameters not indicated
are all zero.
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Figure 10: The scatter plot of goodness-of-fit measure, adjusted R2, for Gabor
fits (y-axis) and double-Gabor fits (x-axis) found for the ICA filters of Figure 5.
The inset is zoomed in on the right. The ICA components below the R2 Gabors
= R2 double-Gabor dashed line (in filled circles) were labeled double-Gabor
filters and the ones above the line (in empty circles) were labeled Gabor filters.
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Figure 11: Histogram of the Gabor parameters for the ICA results of Figure 5.
In this histogram, we have singled out filters in the Gabor class (ky = φy = 0),
with some examples given in Figure 6.

many ICA filters significantly away from the line; the distinction between
these double-Gabor and Gabor filters is preserved after low-pass-filtering
the images. It may not be preserved for fits close to the decision boundary
line, which are proportionally very few here.

The qualitative change of the filters in the Gabor class is captured by the
shift and spread of γx, γy, and kx to smaller values, and the emergence of
double-Gabor filters is quantified by nonzero ky in the histogram of Figure 8.
The ICA filters for random patches and for random position-centered
patches cover the whole space. This is illustrated in Figure 13 by the scatter
plot of (x0, y0) for Gabor and double-Gabor fits. Note that θ in double-Gabor
filters is limited to [0, π/2) compared to Gabor filters, which is limited to
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Figure 12: Histogram of the parameters for the ICA filters in the double-Gabor
class. Examples of the filters in this category are given in Figure 7. Note that
the distribution of wavelengths is shifted to lower frequencies compared to the
case of Gabor filters.

[0, π ). This is because double-Gabor filters are doubly more degenerate
with respect to θ as compared to Gabor filters:

G(x, y|A, x0, y0, θ, γx, γy, kx, φx)

= G(x, y|A, x0, y0, θ − π, γx, γy, kx,−φx),

D(x, y|A, x0, y0, θ, γx, γy, kx, ky, φx, φy)

= D
(

x, y|A, x0, y0, θ − π

2
, γy, γx, ky, kx,−φy, φx

)
.
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Figure 13: (x0, y0) plot of Gabor and double-Gabor filter fits. As expected, the
filter centers (x0, y0) uniformly cover the patch. (a) Gabor fits for ICA on random
patches (b) Gabor fits for ICA on random position-centered patches. (c) Double-
Gabor fits for ICA on random position-centered patches.

We should point out that the double-Gabor filters can be written as the
sum of two Gabor filters due to this trigonometric identity:

2 cos(kxx) cos(kyy) = cos(kxx + kyy) + cos(kxx − kyy). (4.5)

However, we introduced double-Gabor filters as they form a special
subclass of the filters obtained by adding two Gabor functions: they are
characterized by their factorization into two sinusoidals in perpendicular
directions.

We end this section by showing the contrast between Gabor and double-
Gabor filters in the convolution transformation of natural images. Double-
Gabor filters, like Gabor filters, can detect linear features, as shown in the
first example of Figure 15 on the left. The double-Gabor filter convolution
at the bottom left panel of Figure 15 is more sensitive to edges along di-
agonal directions, as expected from the equality in Figure 14. Because of
their additional symmetry properties, they can also detect certain textures,
consistent with their spatial frequencies, as shown in the second example
of Figure 15 on the bottom right. Double-Gabor filters thus have a dual role
as edge and texture detectors. More study needs to be done to make this
observation quantitative.

5 Biological Comparisons

Here we compare our results to experimental observations. Our results
capture some qualitative aspects in the recordings from cats and monkeys
by Ringach (2004) and Xiaodong, Han, Poo, and Dan (2007). Receptive
fields that resemble double-Gabors were found in the neuronal response of
complex cells (which show some degree of translation-invariant responses)
in the primary visual cortex of awake monkeys (Xiaodong et al., 2007).
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2× = +

Figure 14: A graphical demonstration that a double-Gabor function can be
written as sums of two Gabor filters. However, only a small class of functions
obtained by adding two Gabors will factorize in the form of a double-Gabor
function.

However, the double-Gabor type features were not the primary eigenvec-
tors in their spike-triggered covariance analysis.

The distribution of (nx, ny) for cortical neurons (Ringach, 2004) lies
around a line in Figure 16, but this is not matched by the distribution
of filters derived from natural scenes with the conventional ICA (see
Figure 16a). In contrast, the distribution of (nx, ny) for Gabor filters (see
Figure 16b) and double-Gabor filters (see Figure 16c) derived from ICA
applied on position-centered patches better matches the distribution of the
cortical neurons (see Figure 16).

6 Discussion

We have shown that incorporating a simple form of translation invari-
ance in selecting small patches yielded independent components that were
modulated in two directions. We quantified them by a simple extension
of Gabor functions to what we have called double-Gabor functions, with
their signature modulation in two directions. The independent component
analysis of position-centered patches yielded more standard Gabor filters
too. However, these filters were much more extended in both space and
spatial frequency domains. We were successful in capturing some of the
experimental features in the emergence of double-Gabor filters and the dis-
tribution of Gabor parameters among populations of V1 cells reported in
the previous section. The primary visual cortex is the first step in building
the wider invariance in higher visual areas (Rust, Schwartz, Movshon, &
Simoncelli, 2005). In our simulations, the patches we have chosen are
too small to contain any object, and we can think of them as making
a translation-invariant representation for small texture patches and thus
achieving only a partial translation invariance. This partial translation in-
variance for small patches introduces a bias for selecting texture features in
images.
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Figure 15: Two examples of 230 × 230 patches from the van Hateren database
and their convolution transformation by a Gabor and a double-Gabor fil-
ter with similar orientation prefereances. The 21 × 21 Gabor and double-
Gabor filters (scaled up by a factor of three here) are shown in the middle
and the bottom rows, respectively. Their corresponding transformed images
were obtained by squaring each pixel after the convolution transformation
of the images on the top with the filters shown. The convoluted images are
210 × 210 due to edges. The squaring better illustrates the edge and texture
energy.
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Figure 16: Normalized spatial fequency plot of the experimental results (empty
circles) and different versions of ICA filters (filled circles), where nx = kx/(2πγx),
ny = kx/(2πγy). Each empty circle represents measurements from a single corti-
cal neuron. The experimental results are reproduced here with permission from
Ringach (Ringach, 2004; Ringach, Hawken, & Shapely, 2003). nx(y)

is a dimen-
sionless measure of the spread of Gabor-fit filters in x′(y′) direction in units of
the underlying wavelength of the modulations. (a) Filled circles are standard
ICA results. (b) The same plot as a but the filled circles are now obtained by
Gabor fit to the translation-invariant ICA results. (c) Here the filled circles are
obtained from the double-Gabor fits. In all panels, the ICA fits are scaled by
one-half to roughly match the experimental bounds. The failure of the standard
ICA results (see panel a) in capturing the clustering of (nx, ny) along a line
is now replaced with a better fit of the translation-invariant ICA in panels b
and c.

In comparing experimental results with our results, we do not mean to
imply that neurons studied in these experiments perform linear operations
on visual inputs. The selection of a subset of inputs that was the basis for
this study is also a nonlinear operation. As neurons encode progressively
more complex stimulus features with an increasing range of translation
invariance along the visual stream, analysis of independent components of
translation-invariant elements of the visual scenes should help in generating
predictions for the types of feature selectivity one can expect to find in the
extrastriate visual areas. In this study, we considered translation invariance
in small patches derived from natural scenes. Therefore, it is instructive
to compare the resulting features with the properties of complex cells in
the visual cortex that are thought to mediate the first steps of translation
invariance along the ventral visual stream.

The novel and unexpected lesson from this work is that a subset of
inputs shows very different independent components from the whole set.
The qualitative similarity between the double-Gabor filters evident in some
of the independent components and the stimulus features relevant for the
responses of some of V1 complex cells (Xiaodong et al., 2007) suggests a
computational function for these neurons: they might participate in texture
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processing. In a previous study that applied ICA to texture patches (Chen,
Zeng, & van Alphen, 2006), several of the ICA components were double-
Gabor filters, although this was not explicitly noted by the authors. Finally,
independent components computed for a set of images whose translation
invariance was compensated for yielded improved agreement with the
experimentally observed trend in the (nx, ny) distribution (Ringach, 2004).
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