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Abstract-A new approach to the description of processes of plastic defonnation is developed. Within this
approach, the evolution of a dislocation ensemble is detennined by both dislocation multiplication and disloca-
tion transfonnations with both the processes occurring against the background of elastic stresses produced by
the dislocation ensemble itself. Apart from the equations of detailed balance that detennine time changes in the
densities of mobile (glissile) and immobile (sessile) dislocations, an equation that describes the operation of
dislocation sources is suggested and a new parameter that characterizes the time of adjustment of the dislocation
density to external stress is introduced. Def9nnation curves are analyzed at various values of the system param-
eters and the main features of plastic defonnation for some materials are described. The nonmonotonic behavior
of defonnation curves that is observed in some cases upon transition from elastic to plastic defonnation is sug-
gested.

1. INTRODUCTION

Analysis of processes of plastic deformation in
many cases is based on a dislocation model. A vast
body of available experimental data, except for large
deformations, confirms this model [1-3]. Nevertheless,
many problems remain unsolved within this model; in
particular, the deformation curves for some crystalline
materials, cannot be satisfactorily described in the
whole range of stresses, including the transition from
elastic to plastic behavior. The nature of the nonmono-
tonic dependence of 0(£) observed in some cases upon
this transition also remains unclear. It is difficult to
obtain the total set of observed shapes of deformation
curves within the framework of one model. Workon the
mechanisms of temperature and rate dependences of
the yield stress and strain-hardening coefficient for
some materials is in progress. The behavior of crystals
upon multistepdeformatiQnalso remainsan objectof '

discussions.

The description of plastic deformation as the evolu-
tion of a dislocation ensemble requires allowance for
the most characteristic aspects of its behavior, such as
dislocation multiplication and dislocation transforma-
tions. It is important that all these processes occur
against the background of elastic stress fields produced
by the dislocation ensemble itself. In theory, the key
role is played by the relationship between the external
stress and the dislocation density. The form of repre-
sentation of this relationship is most controversial. But,
in any case, in order that the process of plastic deforma-
tion to be established, a mutual adjustment of the
applied stress and dislocation density that increases due

to the operation of dislocation sources must occur. The
adjustment can be very fast if the dislocation sources
switch on rapidly. Otherwise, the adjustment can be
extended in time. The shape of deformation curves is
sensitive to the above factors and, first of all, to the
characteristic time of operation of dislocation sources.

In the approach used in this work, the behavior of a
dislocation ensemble is considered as the evolution of
the dislocation population and is described by equa-
tions of detailed balance and equations of dislocation
multiplication. We attempted to find conditions under
which typical deformation curves can be obtained, such
as strain-hardening curves, curves with a plateau, or
0(£) curves that behave nonmonotonically at small
deformations, etc. We did not concretized the types of
dislocation transformations, but simply divided them
into transformations into long-lived and short-lived
barriers and attempted to clarify how the shape of
deformation curves is affected by the initial density of
dislocations, temperature, deformation rate, and the
characteristic time of operation of dislocation sources.

2. EQUATIONS OF DETAILED BALANCE
FOR THE DISLOCATION DENSITY

The previously obtained [4, 5] equations of detailed
balance that determine the mutual transformations of
glissile and sessile dislocations are generalized in this
work in such a manner that they could allow for not
only the plastic but also elastic part of deformation.

We will represent dislocation transformations in the
form of diagrams such as is shown in Fig. I, which is
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constructed of two elementary diagrams. The ray dia-
gram describes transformations of glissile dislocations
into long-lived (i.e., nondestructible under certain con-
ditions) barriers, whereas the petal-type diagram
describes short-lived barriers. We used the following
designations in Fig. 1:g, glissile dislocations;s, s', sessile
dislocations (barriers); vgsvgs"the frequencies of trans-
formations of glissile dislocations into sessile disloca-
tions (barriers); and vs~' the frequencies of the reverse .
transformations of bamers into glissile dislocations.

The equations of detailed balance that determine
timechangesof thedensitiesof glissile(Pg)andsessile
(Ps' Ps') dislocations will be written in the simplest
form, assuming that these dislocation densities are uni-
form over the sample, i.e., are independent of the coor-
dinates and the transformation frequencies vgs'Vgb and
vsgare the averaged characteristics of the correspond-
ing processes. Then the equations of detailed balance
for the ray-petal diagram shown in Fig. 1can be written
in the following form:

Ps = PgVgs-PsVsg;

Ps' = PgVgs';

where M ~ 0 is the strength of dislocation sources.

The equations of detailed balance in the form (1)
describe the behavior of a dislocation ensemble suffi-
ciently well when the dislocations prove to be blocked
along a certain length rather than locally. First of all,
this is characteristic of the dislocation movement along
the Peierls relief. Such blocking also occurs upon colli-
sions of dislocations with barriers that arise as a result
of reactions or with various boundaries. In intermetallic
compounds, where dislocations of some orientations
transform into barriers by thermal activation, blocking
also occurs over a certain length rather than locally.

In notation (1) we neglect various processes that
lead to a decrease in the dislocation density, such as dis-
location annihilation. To describe dislocation annihila-
tion, terms that are nonlinear in dislocation density
should be added to equation (1). However, such pro-
cesses can be neglected at not too high temperatures.
Therefore, upon the dislocation transformations at
hand, the total dislocation density can only increase or
remain unaltered, i.e., P ~ O.

The greatest frequencies in (1) are the frequencies
of the direct transformations g - s, s' (the times of
movement of a glissile dislocation until it becomes
stopped at a barrier are very small). In particular, vgs~ Vsg'
Since the times of observation t in processes of plastic
deformation are relatively large, i.e., t(Vgs+ Vgs')~ 1,
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Fig. 1. Diagram of dislocation transfonnations.

(1)

the quantity Pg in the first of equations (1) can be
neglected in comparison with PgVgs.It can easily be
shown that in this case we have Pg~ Ps+ Ps"Then, the
system of equations (1) is simplified substantially and
can be written in the form

P = Pg(Vgs+Vgs,)-(p-Ps,)vsg;

PS' = PgVgs'>P==Ps+Ps"

Now, we should link the densities of dislocations of
various types and the frequencies of transformations
with macroscopic parameters (applied stress a, strain e,
and strain rate e). We will use the Orowan relationship,

which links the rate of plastic deformation Epl and the
density of glissile dislocations Pg (moving at a given
instant)

(2)

epl =fbvpg" (3)

where v is the instantaneous velocity of a moving dis-
location, b is the length of the Burgers vector, and I is
the Schmid factor for the slip system at hand.

The observed rate of plasti~ deformation E is natu-

rally divided into the elastic (eel) and plastic (Epl) parts
(see, e.g., [6)):

(4)

where epl is defined by (3), and Eel can be written,
using Hooke's law, in the form

e I = !da = !dae (5)
e Jidt Jide'

whereJi is the effectiveshearmodulusof the material
for a givenslipplane.

For the case of dynamicloading,when E =const
and t =£It , the system of equations (2) can be written,
with allowance for (3)-(5), in the following form:

!2 = ...L(t-! da)- (p - P .)!de blA Jide s e/
dps' t (1 1da)de = biAs' -~de'

(6)
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where

-I -I A-I -I -I
A = As + s', As = Vg/v, As' = Vgs.lv,

. (7)
Es = EIvsg'

Observable quantities As, As' (free-path lengths until
stoppingat correspondingbarriers)andEs(amountof

deformation over a period of ts= v;~ ) are introduced
instead of the transformation frequencies and the
instantaneous velocity. We emphasize that two equa-
tions (6) are insufficient to find three unknown quanti-
ties p, PS" and a. Therefore, we must introduce one
more equation linking these quantities inaddition to (3).

3. PLASTIC FLOW CONDmONS

For macroplastic flow to occur, it is necessary that,
on the one hand, dislocation sources be operating and,
on the other hand, that glissile dislocations, irrespective
of the types of transformationsthey suffer,overcome
elastic counteractionof the surroundings.We may
imagine the following picture of the onset of plastic
flow. Dislocation multiplication starts in preferred
regions, which are isolated from one another at first.
Later, these regions turn out to be connected with one
another, occupying a significant portion of space, simi-
lar to how this occurs in percolation.Developingthis
analogy,we may assumethat macrodeformationstarts
when a corresponding infinite (i.e., passing through the
whole crystal volume) percolation cluster is developed
[7]. But for this to occur, it is necessary that a certain
relationship be established (and fulfilled later on)
between the increasing dislocation density and the
applied stress. For randomly distributed dislocations,
the role of such a relation is played by the known Tay-
lor-Seeger condition [1], when the applied stress is
close to the stress produced by dislocations at average
spacing between them, i.e.,

a =kJP, k =aJib!f,
wherea is a numericalcoefficient.

It is obviousthat condition(8) cannot be fulfilled
immediatelyafter the beginningof deformation.First
of all, the external stress must exceed the quantity
k50, wherePois the initialdislocationdensity.Thus,

a = JiE for E S Eo,

where

(10)

In addition, the adjustment of the dislocation den-
sity to the increasing external stress depends, according
to (8), on how rapidly dislocation sources operate. The
various variants of this adjustment are considered in
Sections 4 and 5.

In the literature, the condition for plastic flow is fre-
quently used (see, e.g. [8]) in a somewhat different than
(8) form

(11)

where aF is a certain starting stress, for example, the
stress for a source to be switched on. Formally, we also
can use this writing, since this does not lead to a loss of
simplicity in the subsequent analysis. However, an
analysis [9, 10] of experiments on the preliminary
deformationof intermetalliccompoundschallengesthe
possibility of using relation (11).

4. DEFORMATION BEHAVIOR
UPON RAPID ADJUSTMENT

OF QUANTITIES P AND a
4.1. Equations of Plastic Deformation

If the adjustment of the dislocation density to the
appliedstressoccursrapidlyenough,then,givenE ~ Eo,
couplingcondition (8) is fulfilledand can be insertedinto
(6). If, however, E < £0, then the stress is described by
expression (9). These two solutions join at point E =Eo.

For a furtheranalysis,it is convenientto pass in
equations (6) from the quantities p, Ps"and a to dimen-
sionless quantities

2 2 2 2- ab - ab-
P = P--r-, Ps'= Ps'---r-, a = aiJi.

f f

With these variables, the system of equations (6)
takes on the following form:

(12)

(8) where

(9)

2 2
a

b
-I a-I

Ec= t As, Ec'= tbAi' (14)

With rapidly adjusting quantities P and a, the sys-
tem of equations for plastic deformation includes, apart
from (13), the following equations:

-
{

E, E< Eo, Eo = jp;"a=
./P, E~Eo'

It follows directly from (15) that, upon rapid adjust-
ment, the greater the initial dislocation density Po, the
greater the extension of the elastic region Eo,which is
not evident at first glance. But this is due to the fact that
the greater the Po, the greater the elastic counteraction
of the initial dislocation structure, which must be over-
come for the elastic deformation to end. The longer the

(15)
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free paths corresponding to various dislocation trans-
fonnations, the more easily the subsequent transition to
plastic flow occurs. As a result, as can be seen from
(14), the valuesof Ec and Ec'are inversely proportional
to the corresponding free paths.

Thus, the behavior of a dislocation ensemble
described by the system of equations (13) and (15) is
detennined by the above parameters Ecand Ec'and the
parameter E, (lifetime of the s-type barriers), which
play the role of characteristic times and characteristic
defonnations, respectively.

4.2. Deformation Curves

We give solutions to system (13), (15) for some sim-
ple cases. For simplicity, we assume that the parameters
Ec, Ec" and E,are independentof the appliedstressand
strain.

In the case where the diagram of the ray-petal type
(Fig. t) degenerates into a ray-type diagram, which
describes the g - s' transformations into long-lived
barriers, plastic deformation is defined, as follows
from (13), by the simple differential equation

dil
(

dO
)dE = Ec't - dE

with the initial condition 00 =£0 at E =£0.

A solutionto thisequationhas the form

o = _!+! 4(E-Eo)+(1 +2Eo)2.
Ec' 2 2 Ec' Ec'

In the beginning of plastic flow, when Ediffers only
slightly from £0, i.e.,

E-Eo 1
(1

2Eo
)
2

-~- +-
Ec' 4 Ec"

the 0 (E) dependence is linear, as for elastic deforma-
tion, but with a smaller slope equal to

(j - 00 £0 1 E - Eo~=-+
Ec' Ec' £0 Ec'

1+2-
Ec'

With further growth in E, when condition (18)
ceases to be valid, a changeover from linear to para-
bolic strain hardening occurS,according to (17),

This is a consequence of the above assumption that
parameter Ec' is independent of the stress and strain. If
we assume that the free-path length As' is inversely pro-
portionalto strain[1], then,using (16)and (14) for Ec"
we obtain the stage of linear rather than parabolic strain
hardening.
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Fig. 2. Deformation curves at various initial dislocation den-
sities Ef/Ec': (1) 0.1; (2) 1.0; (3) 1.5; and (4) 2.5.

Figure 2 displays a (E)curves that were obtained by
(17) at fixed values of Ec' and various £0, Le., various
values of the initial dislocation density Po. All the
curves have bends at points E=£0and the positions of
the bends increase, in accordance with (19), with
increasing EofEc"Correspondingly, the extension of the
straight (elastic) portion of the curve increases, i.e.,
according to (18), the changeover to the parabolic part
is delayed.

At low values of Po, when EofEc'~ 1, we obtain
from (17)

do = 11Jl + 4E/Ec"dE .

(21)

This means that the slope of the a (E)curve
decreases at the £ =Ec' pointbya factorof abouttwoin
comparison with the elastic region. Thus, the parameter
Ec'determines, on the one hand, the extension of the
region of transition from elastic to plastic defonnation
and, on the other hand, the value of the strain.hardening
coefficient upon plastic deformation.

When the ray-petal diagram degenerates into a
petal-type diagram, which describes the mutual g - s
transformations, the equation of plastic deformation, as
followsfrom(13),takeson the followingfonn at E ~ £0
(and 0 ~ (0):

(22)

where E, depends, according to (7), on the strain rate £'.
This equation differs from (16) in the presence of a sec-
ond term in the right-hand side, which becomes sub-
stantial at E~ E, at the expense of reverse s - g trans-
formations.
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o 10 20 30
e/ec

Fig. 3. Deformation curves corresponding to the petal-type
diagramat variousvaluesof eJec(€(fec =0.09): (1) 1.0;
(2) 2.0; (3) 3.0; and (4) 10.0.

file
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2
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o 10 30

Fig. 4. Deformation curves corresponding to the diagrams

of the ray-petal type at various values of ec./ec (at eJec =3.0

and €(fec =0.09): (1) OJ)O; (2) 0.01; (3) 0.05; and (4) 0.1.

A typical set of strain-stress curves 0 (£)fordiffer-
ent values of the £/£c ratio (for the same value of Po)is
given in Fig. 3.

When £, ~ £cothe behavior of the deformation
curvesintheregionwhere£ <£,doesnotdiffersignif-
icantly from the behavior corresponding to the ray-type
diagram. In curve 4 in Fig. 3, like in curve 1 in Fig. 2, a
parabolic strain-hardening stage is distinctly seen.
When £ > £" the 0 (£)dependencelevelsoff,tendingto
a limiting value 0 p defined by the relation

(23)

When £, S £c' the leveling off of the curve occurs
without the stage of parabolic strain hardening (curve 1

in Fig. 3). Curves 2 and 3 illustrate the intermediate
cases.

Deformation curves with plateaus (or with regions
with a decreased strain-hardening coefficient) were
actually observed in some materials such as semicon-
ductors [11, 12], intermetallic compounds [13], etc.
The height of the plateau decreases with decreasing
strain rate and increasing temperature. Such strain-rate
dependence directly follows from (23) with £, given by
expression (7). The temperature dependence of the pla-
teau height observed in semiconductors can be
obtained if we allow for the thermoactivation character
of the s - g transformations. Indeed, in this case, the
value of V,g increases exponentially with increasing
temperature and, therefore, according to (7) and (23),
op should decrease.

If we ignore the dependence of the parameters on
stress, the 0 p dependence on the strain rate must have

a radical character, i.e., 0p oc Jt, and the dependence
on the reciprocal temperature must be exponential.
However, the experimentally observed dependences of
op on both E:and T are much weaker. Since the param-

eters (£, in particular) depend on stress, expression (23)
can be considered only as an equation for determining
oP' It can be shown that the allowance for the stress
dependence of the activation energy, which determines
V,g,substantiallychanges the form of the 0p (E:, 1)
function that is a solution to equation (23). In particular,
using the known expressions for the activation energy
as a function of stress [1], we can obtain weaker depen-
dences (in comparison with those considered above) of
the plateau height on E:and T,close to those experimen-
tally observed.

It should also be noted that the analysis performed
in this work for the petal-type diagram is valid only for
not-tro-Iarge values of the initial dislocation density,
namely, when the condition

. (24)

is fulfilled. The case of very high initial dislocation
densities, when stress 00 is higher than the plateau
height, requires separate consideration.

Since real materials always contain several types of
barriers, both long-lived and short-lived, the deforma-
tion behavior can most conveniently be described by a
diagram of the ray-petal type. Then the system of equa-
tions of plastic deformation has the form (13)-(15).
Solutions to this set of equations for several values of
the £c./£c ratio and fixed values of £/£c .and £rj£care
shown in Fig. 4. Curve 1 in Fig. 4 obtained at £c'= 0
coincides with curve 3 in Fig. 3 and has a plateau. At
nonzero£c" the deformationcurves in Fig. 4, unlike
those shown in Fig. 3, do not level off, but always have
some slope related to 8 - s' transformations.The
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behavior of deformation curves shows how the domi-
nant transformations change with increasing EJEcfrom
transformations to short-lived barriers (curves with pla-
teaus) to transformations to long-lived barriers (curves
with strongly pronounced strengthening).

In all above cases, it was assumed that, immediately

after the condition cr =k JPo is achieved, dislocation
sources begin operating and the dislocation density
quickly adjusts to the external stress, i.e., condition (8) is
fulfilled. In what follows, we discard this assumption
and consider the behavior of a dislocation ensemble
with allowance for the fact that a finite time is required
for dislocation multiplication.

5. DEFORMATION BEHAVIOR
WITH ALLOWANCE FOR THE FINITE TIME

REQUIRED FOR ADJUSTING P AND cr

5.1. Equations of the Evolution
of a Dislocation Ensemble

It is natural to assume that the rate of dislocation
formation p is proportional to the density of disloca-
tion sources and, therefore, the total density of disloca-
tions in a crystal p. This behavior of a dislocation
ensemble permits one to draw an analogy with the evo-
lution of other populations, e.g., biological [14]. Let us
write the equation for the rate of dislocation formation
in the following form:

Here, 't is the characteristictime that determinesthe
operation of dislocation sources. If only the first term
remained on the right-hand side of this equation, the
dislocation density would grow exponentially with
time (i.e., with increasing strain). It is obvious that at
relatively large deformations such growth should slow
down, which is described by the second term in the
right-hand side of (25), proportional to the squared dis-
location density. We also could take into account terms
of higher orders in dislocation density, but for simplic-
ity it is sufficient to restrict ourselves by the above sum-
mand.

Davies [15] made an attempt to link the physical
nature of this summand with the mutual annihilation of
dislocations. However, the annihilation processes are
only important at high temperatures. At the same time,
in the real dislocation ensemble there can exist other
mechanisms that ensure the presence of a negative non-
linear term on the right-hand side of equation (26). First
of all, this is the blocking of dislocation sources by
elastic-stress fields at large dislocation densities. For
biological populations, such a term corresponds to life
competition, in particular, to competition for a free
area. To a certain extent, the situations are similar. But
for a dislocation ensemble the value of A must depend
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on stress, which is a specific feature of this case in com-
parison with other populations.

The form of the A( cr) dependence can be found from
the condition that dislocation sources are operative, i.e.,

p ~ 0, onlyat (j ~ JP, whereasat cr< teJP thedislo-
cation generation rate p becomes negative. However, if
dislocation annihilation is neglected, the dislocation
density can only grow or remain unaltered. Thus, when

cr< teJP, equation (25) becomes invalid and we should
a priori assume that p =0. As a result, we obtain that

A't =l\.2/cr2.Then, at E =const, equation (26) in dimen-
sionless variables (12) takes on the form

dp = £.(1- ~2)' a~ JP;
dE Et cr

(26)

~ - r=

dE =0, cr< ",p,

wheretherelationship

(27)

links the characteristic deformation ~ and time 'to

Thus, to fully describe the evolution of a dislocation
ensemble, we must simultaneously solve equations
(13) and (26). We should emphasize that with taking
into account the finite time of operation of dislocation
sources, equations (26) stand for relation (l5b),
whereas relation (15a) is retained. Wecan expect in this
case that relationship (15b) will be fulfilled asymptoti-
cally at relatively large deformations, when E ~ ~.

5.2. Defonnation Curves

The set of equations that describe the evolution of a
dislocation ensemble for the diagram of the ray type
takes on the form

~ =~(I-;:)
j

, a~JP;
~ = P(I-~).dE Et cr

(28)

dpldE =0, a< JP;
a =E, E< Eo.

The behavior of the a(E) and p(E) functions and
their mutual adjustment depend substantially on the
relationship between Ec'and ~ (see Fig. 5). When Ec'~
~ we should expect a quick adjustment of the disloca-
tion density to the external stress. Indeed, as can be

seen from Fig. 5a, the condition a == JP is fulfilled
right after the condition E ~ ~ is fulfilled. In this case,
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a/f.c', ./p/ec'
I

1.5 (a)

1.0

2 3 4 e/ec'

(b)

4

3

10 15 20 e/ec'

Fig. 5. Externalstress a lec' (curves 1) and the square root

of dislocation density .!P/ec' (curves 2) as functions of
strain at €Jec' =(a) 0.1 and (b) 1.1 (£&'ec' =0.09).

the value of JP is somewhatsmaller than aand at
E~ Ec'theirdifference,accordingto (27), is equalto

(29)

It is the condition Ec' ~ £r that in the limiting case cor-
responds to the instantaneous adjustment that was con-
sidered in Section 4.

A substaIitially different situation can arise at large £r.

The typical behavior of a (E)and Jp(E) in this case is
shown in Fig. 5b. Note the nonmonotonic dependence
a (E),which can be explained as follows. Because of
the slowoperationof dislocationsources,the disloca-
tiondensitythat is requiredto ensurea desiredvalueof
£. is only achievedafter a certain time, i.e., at strains
that are equal to or largerthan £r.Until this density is
achieved,thedesiredvalueof t is primarilyensuredat
the expenseof elasticdeformationand the stresstakes
on a relativelylargevalueof about a", == £r. At defor-
mations larger than £r, the above adjustment takes
place and the a(E) dependence, in accordance with

(20), becomes a = jii;.. As a result, because of the

transition from the linear to parabolic region in the

(a)

4

5 1510

ij/f.c.
I

2

2 4

Fig. 6. Deformation curves corresponding to the ray-type
diagram at various operation parameters of dislocation

sources £Jec' and, initial dislocation densities $o/ec':

(a) $o/ec' =0.09, (l) €J€c'=0.1, (2)0.3, (3)0.7, and (4) 1.1;

(b) ~/ec' =0.2, (1) $o/ec' =9 x 10-2, (2) 9 x 10-3,
(3) 9 x 10-4, (4) 9 x 10-5,and (5) 9 x 10-6.

a (E)curve, the stress must decrease with increasing E

to below a", if the characteristic deformations £r and Ec'

are comparable in magnitudes.

Figure 6a shows a set of deformation curves for var-
ious values of the parameter £JEc"It turns out that the
maximum in the a(E)curve becomes distinct at as low
values of £JEc'as 0.3 aridthe height of the maximum, as
can be expected, increases with increasing r:JEc"

Similar curves, which are solutions to the set of
equations (28) at various values of the initial disloca-
tion density Po, are shown in Fig. 6b. It can be seen that
the maximum height increases substantially with
decreasing Po. Such behavior, which is quite typical of,
e.g., semiconductors [11, 12], is caused by the fact that
at low initial dislocation densities a substantial time is
needed to ensure a noticeable growth of the dislocation
population, such that can ensure a given deformation
rate £..
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In addition, this explains why the maximum in
deformation curves (Fig. 6a) arises at ~ smaller than

Ec" Actually, the effective deformation E;ff that is
required for adjusting dislocation density to the exter-
nal stress can be represented in the form

eff 2 - . - 2
Et == Et In (Ec.1po) > Et, If Po <!11Ec" (30)

An increase in E~ffwith decreasing Po leads to
extending the elastic portion of the deformation curve
and, therefore, to increasing the maximum height

which is approximately E~ff.The condition for the occur-
rence of a nonmonotonicbehaviorof the 0- (E) curvetakes

on the form E;ff ==Ec"i.e., ~ ==Ec.fln(E;'/po). As a result,
the maximum appears at ~ that are smaller than Ec'.

In fact, it directly follows from (30) that the exten-
sion of the elastic portion of the 0- (E) curve increases
with decreasing Po, which does not coincide with the
dependence following from (15) discussed above.
However, this is only an apparent controversy. Indeed,
when dislocation sources operate quickly (Section 4.1),
elastic deformation continues until the deformation Eo

is achieved at which the relationship 0-0= ./Po is ful-
filled. Upon the slow operation of the sources, the elas-
tic deformation continues after this condition is ful-

filled until the stress reaches O-m. Forthe curvesshown
in Fig. 6b, o-o/Ec'~ 0.09, whereas o-m/Ec'~ 1.

The spreading of the elastic portion of the deforma-
tion curve caused by a very low initial dislocation den-
sity was actually observed in tests of metallic [16] and
semiconducting [17] whiskers.

As follows from the above estimates, with allow-
ance for the definition of the parameter ~ (27), the
height of the maximum in the 0- (E) curves increases
and the conditions for its appearance become more
favorable with increasing deformation rate t and char-
acteristic time 't of operation of dislocation sources, and
decreasing the initial density of dislocations Po.

With allowance for the s - g transformations
(diagram of the petal type), the first equation in (28)
must be replaced by the following one:

d-
(

do-

)
-

!!£! =E 1-- _£.
dE c de Es

Then, for Ec,~ ~ Es,the deformation behavior in the
region of E < Esonly slightly differs from the case of
long-lived barriers considered above. With further
increasing E, the deformation curve goes through the
stage of parabolic strengthening and levels off, giving a
plateau, as in the case when the finite time of operation
of sources is neglected (see Section 4.2).

(31)
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Fig. 7. Defonnation curves corresponding to the petal-type
diagram for various values of the paramerere,J£c (at £/£c =I

and $o/£c =0.09): (1) 0.1. (2) 0.2, (3) 0.3. (4) 0.4.

If, in contrast, ~ ~ Es, then the deformation curve
has a well-pronounced maximum and a direct leveling
off (without a stage of parabolic strengthening). How-
ever, as the parameter £.jEcincreases further, the defor-
mation curve exhibits a "break" and the stress drops
below the plateau. Finally, this behavior (just as that
noted in Section 4.2) is related to the assumption that

plasticflowis absentat 0- < JP.
The behavior of deformation curves as a function of

the parameter ~ at comparable values of Es and Ec is
shownin Fig. 7. It can easilybe seenhowa maximum
appearswithincreasingparameterEJEcin thedeforma-
tion curve. The maximum height, as was noted above,
is proportional to ~, which, according to (28), is pro-
portional to t H'toAs can be seen from Fig. 7, with the
parameters used, all the curves level off at the same pla-
teau whose height is determined by expression (23).
The "break" mentioned above occurs at £.jEc~ 0.45.

As can be seen from Figs. 6b and 7, the nonmono-
tonic dependence 0-(E)can be observed upon disloca-
tion transformations into both long-lived and short-
lived barriers. However, in both cases, the dependence
of the maximum height on t proved to be much stron-
ger that observed experimentally [11-13]. This is
related to the fact that we ignored the dependence of the
parameters ~ Ec"£s'and £con stress. In this sense, the
situation is analogous to that discussed in Section 4.2.

For an analysis of the behavior of a' dislocation
ensemble that is described by a ray-petal diagram, the
most substantial problem is that of the change of the
dominant type of dislocation transformations in the
process of plastic deformation (see Section 4.2). The
necessity of considering this changeover arises when
describing the behavior of real systems, where several
types of barriers always exist, but some of them can be
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overcome (or destroyed) very quickly, so that they may
not manifest themselves at all in the process of defor-
mation.

It can easily be shown that the contribution to the
total stress from g - s' transformationsexceedsthat
fromg - s transformations at large deformations
that satisfy tl)e conditions EEc'.~ EsEc'As was noted
above, with the allowance for the finite time of opera-
tion of dislocation sources, any dislocation transforma-
tions become essential only at Eexceeding ~. It is obvi-
ous therefore that the g - s transformations become
unobservableif the followingconditionis fulfilled:

(32)

In this case, we return to the ray-type diagram con-
sidered above. Since the quantities that enter into (32)
depend on the temperature,deformation rate, orientation
of the singlecrystal,etc.,the conditionsforthe observabil-
ityof dislocationtransformationsmaychangewithchang-
ing these parameters. .

CONCLUSION

The behavior of a dislocation ensemble in this work
is described as similar to the evolution of populations.
The key point uniting them is equation (25). In order to
prevent the infinite growth of a dislocation ensemble or
a population, the equation must contain a term that is
nonlinear in density. It is natural that the mechanisms
responsible for the appearance of such a term are differ-
ent for a dislocation ensemble and a population. It is
known that the curves describing the dependence of the
population strengths on time are nonmonotonic [14].

In this work, curves with maxima were also
obtained for dislocation ensembles depending on the
amount of deformation, but for the behavior of stress a
necessaryto ensurea givendeformationrate £ rather
than for the dislocation density p.Here, a specific fea-
ture of dislocationensemblesmanifestsitself, which
consists in that the quantities p and a are related by an
asymptotic relationship (15), but this relation is estab-
lished only gradually, depending on whether disloca-
tion sources operate quickly or slowly. The parameter t
in (25) is the characteristic time of operation of disloca-
tion sources. If the quantities p and a adjust instanta-
neously due to the rapid operation of the sources, then

the a(E) dependence virtually replicates the ,Jp(E)
dependence. .

If the dislocation sources operate slowly, a relatively
large deformation Eis necessary to obtain such a situa-
tion. At small deformations, when the above-mentioned

adjustment had still no time to occur, the a(E) depen-

dence passes through a maximum, whereas ,JP(E)
grows monotonically. Whether the adjustment occurs
rapidly or slowly is determined by the above relation-

ships between the characteristic deformation ~ equal to
t£ and the quantities Ec"Ec,and Esthat characterize dis-
locationtransformationsin accordance with (7) and (14).

As the above analysis shows, the approach sug-
gested in this paper can adequately describe the quali-
tative picture of plastic deformation and yields typical
forms of deformation curves.

However, the condition that at a < k JP no plastic
flow occurs at all, i.e., p = 0, which was assumed in this
work, is too rigid. In particular, it is this condition that
makes it impossible to consider the case of very high
initial dislocation densities for the petal-type diagrams
(Section 4.2) and leads to the loss of stability of the
solution to the set of equations used at large values of
theparameter4Ec (Section 5.2). It is, therefore, natural
to soften this condition and consider it as a certain
approximation; in other words, it is necessary to allow
for the spread of the condition of dislocation percola-
tion through a dislocation framework. We think that
this will eliminate the arising difficulties.

One of the most important problems in considering
processes of plastic deformation is also an analysis of
stress required for switching dislocation sources on.
This problem is of particular importance for intermetal-
lic compounds that exhibit anomalous temperature
dependence of the yield stress [18]. Therefore, the
stress of switching dislocation sources on also must be
appropriately included into the scheme under consider-
ation.
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