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SUMMARY

Cortical receptive fields represent the signal prefer-
ences of sensory neurons. Receptive fields are
thought to provide a representation of sensory experi-
ence from which the cerebral cortex may make
interpretations.While it isessential todetermine a neu-
ron’s receptive field, it remains unclear which features
of the acoustic environment are specifically repre-
sented by neurons in the primary auditory cortex (AI).
We characterized cat AI spectrotemporal receptive
fields (STRFs) by finding both the spike-triggered av-
erage (STA) and stimulus dimensions that maximized
the mutual information between response and stimu-
lus. We derived a nonlinearity relating spiking to stim-
ulus projection onto two maximally informative dimen-
sions (MIDs). The STA was highly correlated with the
first MID. Generally, the nonlinearity for the first MID
was asymmetric and often monotonic in shape, while
the second MID nonlinearity was symmetric and non-
monotonic. The joint nonlinearity for both MIDs re-
vealed that most first and second MIDs were synergis-
tic and thus should be considered conjointly. The
difference between the nonlinearities suggests differ-
ent possible roles for the MIDs in auditory processing.

INTRODUCTION

The primary auditory cortex (AI) is the main initial cortical recipi-

ent of lemniscal information and thus represents an essential sta-

tion for auditory processing (Jenkins and Merzenich, 1984; Read

et al., 2002). Understanding sound processing in AI has centered

on characterizing the receptive fields of AI neurons. At present,

however, there is no standard model of AI processing, in contrast

to the primary visual cortex where the standard energy model for

simple and complex cells has guided work and led to significant

insights into visual processing (Adelson and Bergen, 1985;

Touryan et al., 2002; Rust and Movshon, 2005).

The most widely used model to obtain the spectrotemporal re-

ceptive field (STRF) of an auditory neuron is based on the spike-
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triggered average (STA), which is the average stimulus preceding

a spike (de Boer and Kuyper, 1968; Miller et al., 2002). STAs have

been used to estimate many response properties of cortical

cells, such as temporal and spectral modulations, stimulus se-

lectivity, and response dynamics (deCharms et al., 1998; Theu-

nissen et al., 2000; Depireux et al., 2001; Miller et al., 2001;

Hsu et al., 2004; Woolley et al., 2005, 2006). When STAs have

been used to predict responses to novel stimuli, however, they

have not fully captured the processing of AI neurons (Sahani

and Linden, 2003; Machens et al., 2004).

This underperformance of previous STA approaches may be

due to three competing issues: the STA may be biased by corre-

lations in the stimulus ensemble, filtering was not complemented

with an appropriate nonlinearity, or the STA may represent an in-

complete model of AI processing.

The influence of stimulus correlations on the STA may be re-

moved in the case of Gaussian stimuli, which are completely

described by second-order correlations, though this influence

may not be removed for natural stimuli, which contain higher-

order correlations (Ringach et al., 2002; Paninski, 2003; Sharpee

et al., 2004). In AI, neurons are driven more strongly by spectrally

and temporally complex sounds rather than the pure tones gen-

erally used to define receptive fields. Thus, techniques are

needed that are applicable for these more complex stimuli.

Also, while the STA may be thought of as the mean stimulus

that elicits a spike, it can be considered as one feature, or stim-

ulus dimension, that characterizes the spectrotemporal selectiv-

ity of a neuron. Other features, however, as in the case of

complex cells in primary visual cortex, may be needed to ade-

quately characterize a neuron’s response (Touryan et al., 2002,

2005). Recent work has sought to overcome this limitation by

combining spike triggered covariance methods with Gaussian

distributed stimuli, allowing multiple stimulus features to be re-

covered (de Ruyter van Steveninck and Bialek, 1988; Yamada

and Lewis, 1999; Rust et al., 2005; Slee et al., 2005; Fairhall

et al., 2006; Maravall et al., 2007). These results, though, are

well-defined only for Gaussian stimuli (Simoncelli et al., 2004;

Schwartz et al., 2006).

Here, we apply a recently developed framework that avoids

these constraints (Sharpee et al., 2003, 2004). By using a dy-

namic stimulus with short-term correlations, we first tested if

the STA was an appropriate approximation to the spectrotempo-

ral processing of AI neurons. We then determined if the model of
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AI processing might be extended to two features, which would

represent an increase in spectrotemporal complexity.

Specifically, we modeled neurons as selective for a small num-

ber of relevant dimensions, or linear filters, out of a high-dimen-

sional stimulus space, though within this subspace the outputs

of the filters may be combined in a nonlinear manner to account

for the neural responses. This linear-nonlinear model can more

fully quantify the features in stimulus space that best character-

ize a neuron. By maximizing the mutual information between the

neural responses and the projections of stimuli onto stimulus di-

mensions, we are able to compute these special directions in

stimulus space. Since mutual information is maximized, the di-

rections that allow us to recover the most information are the

relevant dimensions. This approach removes the influence of

stimulus correlations from the estimate of the relevant dimen-

sions, and this calculation is rigorously defined even for complex,

non-Gaussian sounds (Sharpee et al., 2004). In this initial appli-

cation to the auditory system, we rely on the use of Gaussian

stimuli to enhance comparisons to previous estimates of spec-

trotemporal filters. As this framework both recovers multiple

spectrotemporal dimensions and provides an estimate of the

nonlinearities governing the interactions between these dimen-

sions, it provides an advance over previous work in auditory cor-

tex in that it permits a quantitative estimate of feature selectivity

and the rules by which neurons respond to stimuli.

RESULTS

Maximally Informative Dimensions versus
Spike-Triggered Average
We made single-unit recordings from 247 AI neurons in the ket-

amine-anesthetized cat. Neurons were challenged with a contin-

uous, dynamic, broadband moving ripple stimulus, whose spec-

tral extent encompassed the frequency response of each neuron

(Escabı́ and Schreiner, 2002). From the recorded neural traces

single spike trains were obtained to determine the stimulus fea-

tures that elicit spikes. These features were calculated with two

different methods: first by computing the STA and second by

computing maximally informative dimensions (MIDs). The STA

model for a neuron consists of a filter followed by a nonlinearity

(Figure 1A). The nonlinearity describes the response strength of

the neuron as the similarity between the stimulus and the STA

varies. The procedure used to obtain the MID model is shown

in Figure 1B. For the case of one MID, a search is made to find

the filter that maximizes the mutual information between the

spiking response and the presented stimuli. Mutual information

is a quantitative metric that describes the relationship between

stimulus and response, and it is sensitive to the statistics of

the stimulus ensemble and thus may be used with non-Gaussian

stimuli. By maximizing mutual information, a filter is found, along

with a nonlinearity, that provides the best model of the stimulus

selectivity of the neuron. The procedure can be extended to find

a second MID, which further maximizes the mutual information.

This second MID was found by keeping the first MID fixed and

then searching through the space of all possible dimensions to

find the one that would have the most explanatory power when

considered together with the first MID. During the search for

two dimensions, a small percentage of computational time was
spent to update the first MID. In this case the model consists

of two filters, and a two-dimensional nonlinearity, which de-

scribes the stimulus selectivity of the neuron (Figure 1C). MIDs

fall under the general framework of the linear-nonlinear model,

which describes a set of linear filters followed by a static multidi-

mensional nonlinearity (de Ruyter van Steveninck and Bialek,

1988; Marmarelis, 1997; Ringach, 2004; Simoncelli et al., 2004;

Schwartz et al., 2006).

STAs Derived from Different Stimulus Ensembles
To determine a neuron’s time-frequency receptive field, re-

searchers have traditionally calculated the spike-triggered aver-

age (Depireux et al., 2001; Escabı́ and Schreiner, 2002). The STA

is the average stimulus preceding a spike and is obtained by cor-

relating stimulus segments with spike occurrences (Lee and

Schetzen, 1965; de Boer and Kuyper, 1968). While the STA pro-

cedure is well defined for Gaussian stimuli, the Gaussian stimuli

themselves may have different correlation structures (Schwartz

et al., 2006). These structures may pose problems since stimuli

with different statistics may lead to different adapted states, as

shown when receptive fields were computed using natural ver-

sus white noise stimuli in the visual cortex (Sharpee et al.,

2006). To determine the stability of STAs of AI neurons, we com-

puted STAs for two types of Gaussian stimuli, dynamic moving

ripple (DMR) and ripple noise (RN) (Escabı́ and Schreiner,

2002). DMR contains short-term correlations that approximate

features of natural sounds, while RN is more noise-like and

does not contain a strong correlation structure (Figures 2A and

2B; Escabı́ et al., 2003). The STAs for these two sets of stimuli,

however, appear fundamentally similar, with only minor differ-

ences (Figures 2C1–C5 and 2D1–2D5). For the cells for which

this procedure was completed the correlation between the

DMR STA and the RN STA was high (Figure 2E; mean, 0.73;

std, 0.079), consistent with results from the inferior colliculus (Es-

cabı́ and Schreiner, 2002). Thus, in AI, STA estimates appear sta-

ble across these two stimuli and avoid potential complications

that may befall other approaches (Christianson et al., 2008).

We note that if receptive fields are calculated using natural stim-

uli, different adaptation conditions may be invoked (Sharpee

et al., 2006). This may be prevalent in secondary areas which re-

quire these stimuli. Here, though, we focus solely on AI, and thus

in the remaining portion of this report, we examine receptive

fields calculated using the DMR.

Comparison of STAs and MIDs
Since STAs are well-defined only for Gaussian stimuli, and

because they represent only one spectrotemporal feature to

which a neuron is sensitive, we computed STAs and MIDs to

compare the two approaches to estimating auditory receptive

field models (Figure 3, each row represents one neuron). STAs

display spectrotemporal diversity, with each neuron showing

significantly different structure along the spectral and temporal

axes, reflecting distinct spectral and temporal stimulus prefer-

ences (Figure 3, first column). The first MIDs (Figure 3, third col-

umn) represent the stimulus feature that accounts for the most

information between the stimulus and the neural response. The

main features in the STAs also dominate the structure of the first

MID, showing that the first MID was well approximated by the
Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc. 957
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Figure 1. Schematic of Models of AI Receptive Fields

(A) Spike-triggered average model. The stimulus (ordinate: frequency; abscissa: time) is processed by the STA, and the probability of a spike is determined by

a nonlinearity, which describes the response strength as a function of the similarity between the stimulus and the STA. The nonlinearity abscissa is in units of

standard deviation. Units are calculated with respect to the expected similarity between a random stimulus and the STA. High similarity values indicate increased

stimulus selectivity. Responses in the histogram are illustrative.

(B) Procedure used to calculate the MID model for a different neuron. For one MID, an iterative process is followed. A search is made for the feature, or filter, that

maximizes the most mutual information between the stimulus and the spiking response. At each step of the iterative process the filter and the nonlinearity are

estimated.

(C) The two MID model. The procedure in (B) can be extended to find two MIDs. In this case, after the first MID is found, it is held fixed, and an additional search is

made for a second MID. Each MID linearly filters the stimulus, and the rule that governs the strength of the response will then be two-dimensional. In the non-

linearity, red indicates an increase in response rate.
STA when the moving ripple stimulus was used. While differ-

ences between the first MID and STA are present, such as the

slight shortening of the excitatory region for neurons that are

tuned to a narrow range of frequencies (Figure 3, second and

fourth rows), the STA method provides a close approximation
958 Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc.
of the first relevant stimulus dimension even when the influences

of stimulus correlations have not been removed. These esti-

mates of receptive field structure tended to be highly organized,

displaying conventional excitatory-inhibitory subfields within re-

stricted regions of time and frequency.
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Figure 2. STAs Obtained Using Stimuli with Different Statistics

(A) Short spectrotemporal segment of the dynamic moving ripple stimulus

(DMR).

(B) Short segment of the ripple noise stimulus (RN).

(C1–C5 and D1–D5) Example STAs for five neurons. Each row represents the

STAs of one neuron in response to the dynamic moving ripple (C1–C5) and to

the ripple noise stimulus (D1–D5).

(E) Correlation between the dynamic moving ripple and ripple noise STAs.

The STAs for the two stimuli were similar (mean correlation = 0.73; std =

0.079).
The calculation of the model for a single filter is completed

when the nonlinearity has been estimated (see Experimental Pro-

cedures). The nonlinearity describes the probability of spike

generation as the similarity between the filter and the stimulus

varies. The nonlinearities for the STA and the first MID are shown

in Figure 3, columns 2 and 4, respectively. The shape of each

one-dimensional nonlinearity was characterized by an asymme-

try index (ASI). The ASI is defined as ðR� LÞ=ðR + LÞ, where R and

L are the sums of all nonlinearity values corresponding to projec-

tion values greater than or less than 0, respectively. Most STA

nonlinearities were asymmetric (239/247 neurons had ASIs >

0.5) and sigmoidal (monotonic) in shape. The nonlinearity for

the first MID was similar in shape to the STA nonlinearity, though

in some cases (<5%) it revealed a nonmonotonic function.

After calculating the first MID, we completed a two-filter model

for each AI neuron by computing the second MID (Figure 3, col-

umn 5). This second filter represents another special dimension

in stimulus space that further maximizes the information be-

tween single spikes and the stimulus ensemble. In general, the

spectrotemporal structure of the second MID was aligned to

a similar center frequency as the first MID, though the correlation

coefficient between the two filters was almost zero (mean, 0.01;

std, 0.14), indicative of their orthogonality. Examination of the

second MID showed that this dimension exhibited a more com-

plex and irregular composition of excitatory and inhibitory subre-

gions as compared to the first MID. No systematic relationship

between the filters for the temporal features of the two MIDs

was apparent.

The nonlinearities for the first and second MIDs reveal a striking

difference (Figure 3, columns 4 and 6). In the majority of cases

the nonlinearity of the first MID (and of the STA) was asymmetric

and sigmoidal, while the nonlinearity of the second MID was ap-

proximately symmetric and nonsigmoidal (nonmonotonic). The

symmetric nature of the second MID nonlinearity indicates an in-

creased probability of firing when a stimulus is either correlated

or anticorrelated with the filter. Because the response is invariant

to the phase of the stimulus envelope, and thus to the alignment

of the stimulus to the features of the second MID, the second

MID does not contribute to the STA. Stimuli that are uncorrelated

with the filter lead to a decreased probability of a response com-

pared to the mean probability of a spike (represented by the

dashed lines in Figure 3, columns 2, 4, and 6). The shape and

structure of this nonlinearity is reminiscent of those seen for

complex visual cells (Touryan et al., 2002).

In summary, the examples show that one filter accounted for

the response in an asymmetric fashion that was proportional to

the similarity between the filter and the stimulus. The second fil-

ter influenced firing by increasing the response probability in

a manner independent of the sign of the spectrotemporal con-

trast in the stimulus.

Cooperative Linear-Nonlinear Model
The two MID filters and their corresponding one-dimensional

nonlinearities do not constitute the complete receptive field

model. While each filter may independently account for some

of the mutual information encoded by a neuron, the processing

of each may not be independent of the other. The rule that de-

scribes how the combined outputs of the filters lead to a spike
Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc. 959
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Figure 3. Example STAs, MIDs, and Associated Nonlinearities

Each row represents one neuron. STAs and MIDs in columns 1, 3, and 5 have frequency on the ordinate and time on the abscissa. Specific time-frequency pat-

terns of stimulus energy lead to increased (red) or decreased (blue) responsiveness of each neuron and may be interpreted as excitatory or inhibitory regions.

One-dimensional nonlinearities are shown in columns 2, 4, and 6. The ordinate represents the firing rate given the similarity between the stimulus and the filter.

The dashed line represents the average firing rate over the complete stimulus presentation. Column 1: STAs have distinct excitatory and inhibitory regions. Col-

umn 2: STA nonlinearities were usually asymmetric. Column 3: first MIDs, which represent the stimulus feature that best accounts for the neuron’s responses,

resembled the STAs, though the temporal duration of excitation/inhibition is often decreased due to the removal of stimulus correlations. Column 4: first MID

nonlinearities were similar to STA nonlinearities and were often asymmetric. Column 5: second MIDs revealed additional stimulus preferences and were not

well predicted by the structure of the first MID. Column 6: second MID nonlinearities, which were usually symmetric, are structurally different from those of

the first MIDs. Column 7: two-dimensional nonlinearities for the two MIDs. The ordinate/abscissa represents the similarity between the second/first MID and

the stimulus. The color range (blue to red) indicates the response strength (low to high). Nonlinearities were not spatially uniform, indicating specific stimulus

configurations lead to the largest response. Error bars are SEM.
can be quantified by computing a two-dimensional nonlinearity

for each neuron (Figure 3, column 7). This joint nonlinearity is de-

pendent on the simultaneous projection of the stimulus onto

both the first and second MID. These examples reveal a cres-

cent-shaped joint nonlinearity function, as expected for a neuron

with a sigmoidal nonlinearity for the first filter and a symmetric

nonlinearity for the second filter (Rust et al., 2005; Fairhall

et al., 2006). In addition, the firing probability for the two-dimen-

sional nonlinearity is regionally greater compared to either one-

dimensional nonlinearity alone.

Comparison between the STA and the First MID
The similarity between the STA and the first MID was quantified by

correlating the STA and the first MID (Figure 4A). For the majority

of filters, the correlations were high (mean, 0.71; std, 0.16), indi-

cating similar spectrotemporal structure. For the nonlinearities,

the correlations were similarly high (Figure 4B; mean, 0.74; std,
960 Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc.
0.28). These two results demonstrate that the STA and the first

MID capture the same basic spectrotemporal processing pat-

terns of AI neurons, though with the significant difference that

the MID estimate is impervious to potential biases induced by

non-Gaussian stimuli and stimulus correlations on the calculation

of the STA. We calculated the mutual information accounted for

by the STA and the first MID using a novel stimulus test set (see

Experimental Procedures). Since the test set was not used to con-

struct the STAor the first MID, it isnot guaranteed that the first MID

information will exceed that for the STA. These information calcu-

lations furnish a robust metric to evaluate how well each filter (plus

nonlinearity) captures the actual processing of a neuron (Adelman

et al., 2003). In all cases, the first MID accounted for more informa-

tion than the STA (Figure 4C). We note that this result is not true by

definition, since the first MID may possibly be obtained through

overfitting, and thus the STA might have more information than

the first MID. We found that the STA information approached
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that of the first MID (Figure 4D; median, 63%), indicating that the

performance of the STA was less than the ability of the first MID to

predict single spikes from the stimulus ensemble.

Figure 4. Comparison between STAs and First MIDs

(A) Correlation between the STA and MID1 filters. For most neurons the spec-

trotemporal structure of the STAs and first MIDs were highly correlated.

(B) Correlation between the STA and MID nonlinearities. The structure of the

STA and MID1 nonlinearities were also similar.

(C) Comparison between the STA and MID mutual information (bits/spike). The

first MID was able to account for more information than the STA.

(D) Relative comparison of STA mutual information to that of the first MID

(median = 63%).
Figure 5. Population Analysis of 1D Nonlinearity

Structure for STAs and MIDs

Asymmetry of the 1D nonlinearities was determined by com-

paring the values corresponding to positive similarities to

those for negative similarities. Asymmetry Index values

(ASIs) near +1 or�1 indicate highly asymmetric nonlinearities.

ASIs near 0 indicate a symmetry.

(A–C) Frequency histogram of the asymmetry of the nonlinear-

ities. The STA and MID1 nonlinearities are highly asymmetric,

while the MID2 nonlinearities were symmetric.

(D) Comparison of STA and first MID nonlinearity structure.

Most AI neurons that had an STA with an asymmetric nonline-

arity also had an MID1 with a similarly structured nonlinearity.

(E) Comparison of first and second MID nonlinearity structure.

Auditory neurons usually had an MID1 nonlinearity that

was asymmetric paired with an MID2 nonlinearity that was

symmetric.
To further establish these results, we computed the variance in

the firing rates predicted by the STA and by the first MID for the

test data set (Paninski, 2003; Sharpee, 2007). We formed the ra-

tio of the first MID to STA variances and found that a higher per-

centage of the firing rate variance was described by the first MID

compared to the STA (mean percentage,185; std, 142; p = 0.011,

t test), consistent with the higher MID mutual information com-

pared to the STA.

One-Dimensional Nonlinearity Structure
For STAs, the majority of nonlinearities were asymmetric (ASI

mean, 0.78; std, 0.14), with similar but slightly smaller values

for the first MID (ASI mean, 0.57; std, 0.23; Figures 5A, 5B, and

5D). The second MID nonlinearities were on the average sym-

metric (Figure 5C; ASI mean, 0.01; std, 0.27). This implies that

a typical AI neuron, in the extended phenomenological receptive

field model, contains functional subunits that both threshold (first

MID) and square (second MID) the outputs of the individual filters

(Figure 5E).

Two-Dimensional Nonlinearity Structure
The rule that describes how the combined outputs of the MID

filters lead to a spike was quantified by computing a two-dimen-

sional nonlinearity for each neuron (see Figure 3, column 7, for

examples). This joint nonlinearity is dependent on the simulta-

neous projection of the stimulus onto both the first and second

MID. The two-dimensional nonlinearities in Figure 3 reveal a cres-

cent-shaped function, as expected for a neuron with a sigmoidal

nonlinearity for the first filter and a symmetric nonlinearity for the

second filter (Rust et al., 2005; Fairhall et al., 2006). In addition,

the firing rate for the two-dimensional nonlinearity is regionally

greater compared to either one-dimensional nonlinearity alone
Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc. 961
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Figure 6. Population Analysis of the Struc-

ture of 2D Nonlinearities

(A) Peak response rates in the two-dimensional

nonlinearities are plotted against the sum of the

peak rates in each of the MID1 and MID2 one-

dimensional nonlinearities. For most neurons the

joint nonlinearity contained a higher firing rate, in-

dicating that special stimulus configurations may

excite AI neurons in a manner that cannot be pre-

dicted by the independent processing of the MIDs.

(B) Structural analysis of two-dimensional non-

linearities. The frequency histogram of the

inseparability of the two-dimensional nonlinear-

ities across all AI neurons is shown. Inseparability

index values near 0 indicate that the 2D nonlinear-

ity can be approximated by a product of two

1D nonlinearities. For most AI neurons this approximation was inappropriate, as indicated by the nonzero mode of the distribution, implying that the joint

stimulus processing of the two MIDs contains more information than the independent processing of each MID.
(Figure 3). This increased response probability is not simply

a product of the different and independent nonlinearities but

reflects a cooperativity, or synergy, when both filters act simulta-

neously on the stimulus. Indeed, for most neurons the peak re-

sponse rate in the two-dimensional nonlinearity is greater than

the sum of the peak rates in each of the two one-dimensional

MID nonlinearities (Figure 6A). Thus, the joint probability distribu-

tion governing the response contains more information than

a simple product of each filter’s one-dimensional nonlinearity.

The degree of cooperativity in the nonlinearity can be quanti-

fied by determining its separability into its marginals. Two-

dimensional nonlinearities that are highly separable imply, if

stimuli are uncorrelated, that the processing of the neuron is

well characterized by two independent filters. Highly inseparable

nonlinearities may imply that the probability distribution describ-

ing the neural response cannot be captured by a simple product

of two one-dimensional functions. Therefore, the joint distribu-

tion likely includes more information than a product of its mar-

ginals. An inseparability index quantifies the degree of separabil-

ity for the population of AI neurons (Figure 6B). Inseparability

indices near 0 indicate a nonlinearity that can be described as

a product of two independent distributions. Values near 1 indi-

cate the inadequacy of this description. Inseparability indices

in AI ranged from nearly separable to moderately inseparable

(mean, 0.27; std, 0.10), though all neurons showed some degree

of inseparability, indicating that it is more appropriate to charac-

terize the two filters by a two-dimensional rule and not simply by

the product of the two one-dimensional nonlinearities. Another

way to check for the degree of synergy between the two relevant

dimensions is to compare the information captured by these two

features together or separately. We consider this next.

Model Comparison
Given a more complete two-dimensional linear-nonlinear recep-

tive field model, the performance of the model can be quantified

and tested against other possible AI receptive field models. A

natural measure of performance is the mutual information

between the stimulus projections onto the MIDs and the neural

responses (Adelman et al., 2003; Sharpee et al., 2003; Fairhall

et al., 2006), since mutual information is sensitive to subtle differ-

ences in the probability distributions which govern the likelihood
962 Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc.
of a neural response. In the results that follow, information values

are directly related to the predictive power of each model, since

for each model the values were calculated using a novel test

stimulus set that was not used to estimate the MIDs (see Exper-

imental Procedures). The results of this analysis show that the

information captured by the two-filter model (Figure 7A) in every

case exceeds the one-filter model. The one-filter model usually

accounted for 62% (population median) of the information in

the two-filter model (Figure 7B). This result provides insight

into the number of features needed to adequately represent

the response properties of AI neurons. For some neurons the

STA, or one-dimensional model, is adequate, though a clear

advantage is conferred on the predictions based on a model

with at least two maximally informative dimensions.

For every neuron, the first dimension accounted for more in-

formation than the second, in agreement with the definition

(Figure 7C). The information contributed by the second filter

was approximately 25% (median) of the first filter’s information

(Figure 7D).

The joint two-filter model provides more information than the

sum of two independent filters. The ratio of the joint information

to the sum of the independently calculated information describes

the amount of synergy in the processing of the two filters

(Figure 7F). The synergy also quantifies the earlier observation

that the two-dimensional nonlinearities of AI neurons are partially

inseparable (Figure 6B). For most neurons, the receptive field

model with the joint two-dimensional nonlinearity accounts for

more information than a model of independently calculated filters

and nonlinearities (Figures 7E and 7F). If the joint and independent

MID receptive field models account for the same amount of infor-

mation, the synergy is 100%. The median synergy was 128%,

which was significantly greater than 100% (p < 0.01, Wilcoxon

signed-rank test; Bain and Engelhardt, 1992). Thus, in most cases

there is synergy between the maximally informative dimensions,

as demonstrated by the points above the solid diagonal line that

represents unity slope (Figure 7E). For 37% of neurons, the syn-

ergy exceeded 150% (Figure 7F). Thus, the responses of these

neurons are most accurately modeled from a nonlinear rule that

is a function of the joint stimulus processing of the two filters.

The relative contribution of each MID to the jointly conveyed in-

formation predicts the degree of synergy (Figure 8). Comparing
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the degree of single-dimension contribution to the synergy be-

tween maximally informative dimensions reveals a strong nega-

tive correlation (r =�0.96, p < 0.01, t test). In addition, a tendency

exists that the more balanced the contribution of the two linear

filters the higher is the synergy between the processing of each

filter (r = 0.26, p < 0.0003, t test). These findings suggest that

as the complexity of the spectrotemporal processing of AI neu-

rons increases, the less independent is the processing by each

Figure 7. Population Analysis of Information Processing of Maxi-
mally Informative Dimensions

(A) Comparison of mutual information (bits/spike) for the two MID model versus

the one MID model. The two MID model (ordinate) always accounted for more

information than the single MID model (abscissa).

(B) Frequency histogram of the relative contribution of the first MID to the two

MID model information. The MID1 accounted for approximately 62% of the

information in the combined model.

(C) Comparison between the first MID and second MID information. The MID1

information was greater than the MID2 information.

(D) Frequency histogram of the relative comparison between the first and sec-

ond MID information. The MID2 information was approximately 30% of the

MID1 information.

(E) Comparison between the information of the two MID model when the filters

process stimuli jointly versus independently. The combined, joint processing

model accounted for more information than a model of two independently pro-

cessing MIDs.

(F) Frequency histogram of the cooperative processing, or synergy, of the two

MIDs. The median synergy between the MIDs was 128%; for 37% of neurons it

exceeded 150%.
filter. As a consequence, the amount of information conveyed

by the interaction between the various filters is considerably

greater than the independent processing of each filter by itself.

DISCUSSION

The purpose of this study was to apply a linear-nonlinear frame-

work to the analysis of AI spectrotemporal receptive fields that

combines multiple linear filters with nonlinear processing stages.

The traditional approach to analyzing the spectrotemporal pro-

cessing of AI neurons has been to calculate the spike triggered

average, or linear spectrotemporal receptive field. The STA rep-

resents the mean stimulus that elicits a spike, though it may be

biased by stimulus correlations and statistics, and it describes

only one spectrotemporal stimulus feature that influences the

neuron’s response. By applying the linear-nonlinear model to

describe AI receptive fields, previous limitations of spike-trig-

gered techniques were largely avoided. The linear receptive field

portion was determined by maximizing the mutual information

between the estimated receptive field and the neural response

(Sharpee et al., 2003, 2004). An inherent feature of the method-

ology is that it corrects for stimulus correlations.

This framework revealed that STAs are in reasonable agree-

ment with the first maximally informative dimension that emerged

in the linear-nonlinear model (Figure 4). Further, across every

tested neuron for which a significant number of spikes were ob-

tained, there were no cases in which a first informative dimension

was found but an STA was not (for six cells significant spiking was

observed, though no STAs or MIDs emerged). This stands in con-

trast to the situation in the visual cortex, where complex cells can-

not be analyzed using spike-triggered averaging but may be

quantified using more nonlinear techniques (Touryan et al.,

2002, 2005; Sharpee et al., 2004; Felsen et al., 2005; Rust et al.,

2005). The accompanying nonlinearities of the STA and the first

MID were also highly correlated. Thus, at the level of AI the STA

is a good approximation to the first maximally informative dimen-

sion, and in the case of ripple stimuli commonly used in AI studies

this provides validation for previous receptive field estimates

(Klein et al., 2000; Miller et al., 2001, 2002; Fritz et al., 2005).

Figure 8. Comparison between Synergy and First MID Contribution

Ordinate: synergy. Abscissa: ratio of the first MID information to the two

MID information. The correlation between the data points was significant

(r = �0.96, p < 0.01, t test).
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While the first maximally informative dimension accounts for

the main feature in stimulus space to which a neuron responds,

other contributing stimulus features may exist. Maximizing infor-

mation allowed the derivation of a second relevant dimension

in the linear-nonlinear model. This second MID influences a neu-

ron’s firing, though in a manner substantially different from the

first relevant dimension. The second MID processes stimuli

in an envelope-phase invariant manner by increasing the proba-

bility of a spike regardless of the contrast polarity of the stimulus.

The only requirement is that the stimulus be moderately

correlated or anticorrelated with this second dimension (Fig-

ure 3). This style of processing is reminiscent of the nonlinearities

associated with complex cells or of those in current extended

models of simple cell processing in the visual cortex, where

the nonlinearities are estimated as even ordered, or approxi-

mately squaring, functions (Rust et al., 2005; Chen et al., 2007).

The shape of STAs may depend on the stimulus set used to

obtain the filter estimates, especially when using non-Gaussian

statistics (Sharpee et al., 2006). STAs obtained for different

Gaussian stimuli showed no clear differences (Figure 2; Escabı́

and Schreiner, 2002). MIDs are likely to be more stable than

STAs as shown by a study in the visual cortex even for non-

Gaussian stimuli due to the inherent properties of the analysis

framework (Sharpee et al., 2006). We therefore expect that in

the auditory cortex, any potential complications that may befall

other approaches, due to nonlinear interactions between filter

components (Christianson et al., 2008), will be minimized by

the MID methodology and likely be of minor consequence for

the results and the interpretations presented here.

Identifying two relevant stimulus dimensions permits the com-

putation of the joint two-dimensional nonlinearity which governs

the probability of spiking and describes a rule by which neural re-

sponsiveness can be quantified. The joint nonlinearity was not

simply a product of each relevant dimension’s individual nonlin-

earity but reflected specific, nonpredictable interactions that

resulted in a cooperative or synergistic response behavior. Sig-

nificant synergy, in excess of 125% for 53% of the neurons (Fig-

ure 7), imposes a requirement for accurate modeling of AI spiking

responses. Models that do not account for this previously un-

known computational richness may not perform well simply

because they lack the ability to quantify how the different dimen-

sions interact to influence neural responsiveness, and thus the

predictive power of these models will be diminished.

Analysis of the contribution of each filter to the stimulus infor-

mation in the spike train showed that the relative contributions

fell along a continuum, perhaps in analogy to the classification

of simple and complex cells in the visual cortex, which may

also fall along a continuum (Skottun et al., 1991; Mechler and

Ringach, 2002; Priebe et al., 2004). An implication for AI is that

for some neurons the first dimension, or even the STA, is a suffi-

cient approximation to the overall processing. For many other

neurons, however, a greater diversity of computation is seen.

For these neurons, one dimension is not an adequate descrip-

tion, and the standard spike-triggered average model is not ap-

propriate. Coupled with the insight that the multiple stimulus

dimensions of many AI neurons operate synergistically, it be-

comes clear that the extended linear-nonlinear model provides

a much more complete understanding of neuronal coding strat-
964 Neuron 58, 956–966, June 26, 2008 ª2008 Elsevier Inc.
egies (Figure 8). The application of the linear-nonlinear model to

AI using information maximization represents a significant ad-

vance over previous approaches, since it permits quantification

of several stimulus features that influence a neuron’s firing, how

feature selective a neuron is, and how this feature selectivity

interacts synergistically to influence a neuron’s response. This

behavior and its quantification can be construed as a generaliza-

tion of the combination-sensitivity principle that has been dem-

onstrated for cortical and subcortical neurons in acoustically

specialized animals such as bats and birds (Suga et al., 1978;

Margoliash and Fortune, 1992; Portfors and Wenstrup, 2002).

A functional interpretation of the components of the two-filter

model remains speculative, especially in light of the strong inter-

action between the two nonlinearities. However, based on in-

sights from the simple and complex cells in the visual system

(Felsen et al., 2005), it is not unreasonable to postulate that the

first filter in combination with the asymmetric nonlinearity may

be a feature detector tuned to a narrow range of stimulus con-

stellations and with high sensitivity to the envelope phase. The

closer the match between stimulus and filter, the stronger is

the response. By contrast, the second filter, with the associated

symmetric nonlinearity, may correspond more to an envelope

phase-insensitive detector tuned to a broader range of stimulus

parameter constellations and acting to improve the saliency of

auditory features (Felsen et al., 2005).

EXPERIMENTAL PROCEDURES

Electrophysiology

Electrophysiological methods and stimulus design are similar to previous re-

ports (Miller and Schreiner, 2000; Miller et al., 2002). Young adult cats were

given an initial dose of ketamine (22 mg/kg) and acepromazine (0.11 mg/kg),

and anesthesia was maintained with pentobarbital sodium (Nembutal,

15–30 mg/kg) during the surgical procedure. The animal’s temperature was

maintained with a thermostatic heating pad. Bupivicaine was applied to inci-

sions and pressure points. Surgery consisted of a tracheotomy, reflection of

the soft tissues of the scalp, craniotomy over AI, and durotomy. After surgery,

the animal was maintained in an areflexive state with a continuous infusion of

ketamine/diazepam (2–10 mg/kg/hr ketamine, 0.05–0.2 mg/kg/hr diazepam in

lactated Ringer solution). All procedures were in strict accordance with the

University of California, San Francisco Committee for Animal Research.

All recordings were made with the animal in a sound-shielded anechoic

chamber (IAC, Bronx, NY), with stimuli delivered via a closed speaker system

(diaphragms from Stax, Japan). Simultaneous extracellular recordings were

made using multichannel silicon recording probes (kindly provided by the Uni-

versity of Michigan Center for Neural Communication Technology). The probes

contained 16 linearly spaced recording channels, with each channel separated

by 150 mm. The impedance of each channel was 2–3 MU. Probes were carefully

positioned orthogonally to the cortical surface and lowered to depths between

2300 and 2400 mm using a microdrive (David Kopf Instruments, Tujunga, CA).

Neural traces were band-pass filtered between 600 and 6000 Hz and were

recorded to disk with a Neuralynx Cheetah A/D system at sampling rates

between 18 and 27 kHz. The traces were sorted off-line with a Bayesian

spike-sorting algorithm (Lewicki, 1994). Each probe penetration yielded 8–16

active channels, with �1–2 single units per channel. Stimulus-driven neural

activity was recorded for �75 min at each location.

Stimulus

For any recording position neurons were probed with pure tones, then two

presentations of a 15 or 20 min dynamic moving ripple stimulus, followed by

approximately 20 min of complete silence, during which time spontaneous

activity was recorded. Each pure tone was presented five times. The level

and frequency of each pure tone was chosen randomly from 15 different levels
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(5 dB SPL spacing) and 45 different frequencies. The dynamic ripple stimulus,

which has a Gaussian amplitude distribution, was a temporally varying broad-

band sound (500–20,000 or 40,000 Hz) composed of approximately 50 sinu-

soidal carriers per octave, each with randomized phase (Escabı́ and Schreiner,

2002). The magnitude of a carrier at any time was modulated by the spectro-

temporal envelope, consisting of sinusoidal amplitude peaks (‘‘ripples’’) on

a logarithmic frequency axis that changed over time. Two parameters defined

the envelope: a spectral and a temporal modulation parameter. Spectral mod-

ulation rate was defined by the number of spectral peaks per octave, or ripple

density. Temporal modulations were defined by the speed and direction of the

peaks’ change. Both the spectral and temporal modulation parameters were

varied randomly and independently during the nonrepeating stimulus. Spectral

modulation rate varied slowly (max. rate of change 1 Hz) between 0 and 4 cy-

cles per octave; the temporal modulation rate varied between�40 Hz (upward

sweep) and 40 Hz (downward sweep), with a maximum 3 Hz rate of change.

Both parameters were statistically independent and unbiased within those

ranges. Maximum modulation depth of the spectrotemporal envelope was

40 dB. Mean intensity was set at 70 or 80 dB SPL. Ripple noise (RN) stimuli

were constructed from the sum of 16 independent DMR stimuli resulting in

a stimulus of similar spectral and temporal content as the DMR stimuli but

with reduced local correlations (Escabı́ and Schreiner, 2002).

Analysis

Data analysis was carried out in MATLAB (Mathworks, Natick, MA). Before

receptive field analysis the ripple stimulus was downsampled to have a resolu-

tion of 12 carriers per octave spectrally and 5 ms temporally. We first used the

reverse correlation method to derive the spectrotemporal receptive field

(STRF), which is the average spectrotemporal stimulus envelope immediately

preceding a spike (STA) (Aertsen and Johannesma, 1980; deCharms et al.,

1998; Klein et al., 2000; Theunissen et al., 2000; Escabı́ and Schreiner,

2002). Positive (red) regions of the STA indicate that stimulus energy at that

frequency and time tended to increase the neuron’s firing rate, and negative

(blue) regions indicate where the stimulus envelope induced a decrease in fir-

ing rate. For each STA we computed the nonlinear function that related the

stimulus to the probability of a spike. Each stimulus segment s that elicited

a spike was projected onto the STA via the inner product z = s,STA. The pro-

jection values were then binned to obtain the probability distribution

PðzjspikeÞ. We then projected all stimuli onto the STA without regard to a spike

occurrence and formed the prior stimulus distribution, PðzÞ. The projection

values that comprised PðzjspikeÞ and PðzÞ were transformed to units of stan-

dard deviation by normalizing relative to the mean, m, and standard deviation,

s, of PðzÞ, using x = ðz� mÞ=s. The nonlinearity for the STA was then computed

as PðspikejxÞ= PðspikeÞPðxjspikeÞ
PðxÞ , where PðspikeÞ is the average firing rate of the

neuron (Aguera y Arcas et al., 2003).

To obtain the MIDs, we followed previously reported methodologies (Shar-

pee et al., 2004, 2006). The first MID is the direction in stimulus space that ac-

counts for the most mutual information between stimulus and response. The

first MID was obtained through an iterative procedure, where the relevance

of any ‘‘candidate’’ dimension v1 was quantified by computing the mutual in-

formation between the occurrence of single spikes and projections of the stim-

ulus, s, onto v1. We searched through different directions in the stimulus space

until convergence. This estimation procedure automatically corrects for stim-

ulus correlations. The second MID was then found as the dimension in the

stimulus space that, together with the first MID, further maximized the informa-

tion. Further MIDs were not calculated due to data limitations and computa-

tional considerations. One-dimensional nonlinearities for the first and second

MIDs were computed in the same manner as the nonlinearity for the STA.

The mutual information between projections onto individual filters and single

spikes was computed according to IðvÞ=
Ð

dxPðxjspikeÞlog2

h
PðxjspikeÞ

PðxÞ

i
. The

filter v was either the STA, the first MID, or the second MID. The mutual

information between single spikes and both MIDs was calculated as

IðMID1;MID2Þ=
ÐÐ

dx1dx2Pðx1; x2jspikeÞlog2

h
Pðx1 ;x2 jspikeÞ

Pðx1 ;x2Þ

i
, where x1 and x2

represent the projections of the stimulus onto the first and second MIDs,

respectively. The two-dimensional nonlinearity was calculated via

Pðspikejx1; x2Þ= PðspikeÞPðx1 ;x2 jspikeÞ
Pðx1 ;x2Þ .

All estimates of relevant stimulus dimensions (STA, first and second MID)

were computed as an average of four jackknife estimates (Efron and Tibshirani,
1994). Each jackknife estimate was computed by using a different 3⁄4 of the data

(the training data set), thus leaving a different 1⁄4 of the data as a test data set.

The test data set was used for estimating the information values accounted for

by the jackknife estimate of the relevant dimensions. Information values were

calculated using different fractions of the test data set for each neuron. To ac-

complish this, the information values were calculated over the first 50%, 60%,

70%, 80%, 90%, 92.5%, 95%, 97.5%, and 100% of the test data set. The in-

formation calculated from these data fractions was plotted against the inverse

of the data fraction percentage (1/50, 1/60, 1/70, etc.). We extrapolated the

information values to infinite data set size by fitting a line to the plot and taking

the ordinate intersect as the information value for unlimited data size.

The synergy between the two MIDs was defined as 100 IðMID1 ;MID2Þ
IðMID1Þ+ IðMID2Þ, where

each mutual information value was obtained via the extrapolation procedure.

The shape of each one-dimensional nonlinearity was characterized by an

asymmetry index (ASI). The ASI is defined as ðR� LÞ=ðR + LÞ, where R and L

are the sums of all nonlinearity values that correspond to projection values

greater than or less than 0, respectively. The index ranges from �1 to 1,

with 0 representing a nonlinearity that is completely symmetric for positive

and negative projection values, implying that correlated and anticorrelated

stimuli equally influence the probability of a neural response. ASIs near 1 or

�1 indicate neurons that have an increased probability of spiking when the

stimulus is either positively or negatively correlated with the filter, respectively.

The inseparability of the two-dimensional nonlinearity was determined by

performing singular value decomposition on Pðspikejx1; x2Þ (Depireux et al.,

2001). The inseparability index was defined as 1� s2
1=
P

i

s2
i where s1 is the

largest singular value. The inseparability index, which ranges between 0 and

1, describes how well Pðspikejx1; x2Þ may be described by a product of two

one-dimensional nonlinearities, with values near 0 corresponding to a nonline-

arity for which this description is appropriate.
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