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Abstract

Natural stimuli elicit robust responses of neurons throughout sensory
pathways, and therefore their use provides unique opportunities for un-
derstanding sensory coding. This review describes statistical methods
that can be used to characterize neural feature selectivity, focusing on
the case of natural stimuli. First, we discuss how such classic methods as
reverse correlation/spike-triggered average and spike-triggered covari-
ance can be generalized for use with natural stimuli to find the multiple
relevant stimulus features that affect the responses of a given neuron.
Second, ways to characterize neural feature selectivity while assuming
that the neural responses exhibit a certain type of invariance, such as
position invariance for visual neurons, are discussed. Finally, we discuss
methods that do not require one to make an assumption of invariance
and instead can determine the type of invariance by analyzing rela-
tionships between the multiple stimulus features that affect the neural
responses.
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INTRODUCTION

One way to understand how the brain works is
to describe the function of each of its neurons.
In sensory systems, to describe a neuron’s
function means to create (either explicitly or
implicitly) a model that can predict the neural
responses to novel stimuli. Ultimately, the goal
is to predict a neuron’s responses to “natural
stimuli,” i.e., stimuli that are taken from an
animal’s environment (or to approximate
such stimuli) (Felsen & Dan 2005). However,
one can gain significant understanding of the
function of neural pathways by using simplified
stimuli (Rust & Movshon 2005). In fact,
much of our current understanding about the
function of visual pathways has been obtained
using reduced parametric stimuli, such as spots
of light, edges and bars, curved contours, and
elements of three-dimensional shapes. Studies
using parametric stimuli have led to such fun-
damental insights as the establishment of ori-
entation selectivity in the primary visual cortex
(V1) as well as tuning for curvature and orien-

tation in three dimensions at subsequent stages
of visual processing (Anzai et al. 2007, Bakin
et al. 2000, Desimone & Schein 1987, Hubel &
Wiesel 1968, Kuffler 1953, Kunsberg & Zucker
2012, Li & Zaidi 2004, McManus et al. 2011,
Pasupathy & Connor 1999). The use of para-
metric stimuli has many advantages. Mainly, if
the stimuli can be parameterized with a small
number of parameters, then the corresponding
stimulus set can be probed well experimentally,
resulting in models with high predictive power,
at least with the parameterized stimulus set.
However, the use of parametric stimuli in
some sensory areas, especially those beyond
V1, presents some difficulty, namely that the
relevant set of parameters is either unknown or
of such high dimensionality that fully sampling
it is no longer feasible. As an example, one can
think of the many parameters that are needed
to describe facial features and expressions.
In such cases, computational approaches to
characterize neural feature selectivity become
indispensable.

In parallel to work in vision, research in the
auditory modality since the 1950s has relied
much more heavily on the use of computational
approaches to describe neuronal function. The
basic idea is to use stimulus sets that are defined
by their statistical properties, such as the mean,
variance, or correlation structure, but are
otherwise unconstrained. Thus, instead of
using a few parameters, such as the orientation
or length of a bar, to specify each particular
stimulus, investigators use a few parameters
to specify the properties of an entire stimulus
distribution. Examples of the resulting stimulus
ensembles include “white-noise” stimuli for
which the mean and variance are specified
but responses at different times or across
different spatial locations are uncorrelated.
Adding correlations between stimulus values at
different times, frequencies, or locations yields
ensembles of correlated Gaussian stimuli.
Again, the correlations between different stim-
ulus values can be described by a small number
of parameters, such as how fast the correlations
decrease with the increasing distance between
pixels.
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The use of statistical stimulus sets has its
own advantages. First, because the stimulus
set is not optimized for a given neuron, such
stimuli are ideally suited for multielectrode
recordings that are becoming increasingly
common. Second, the use of such stimuli
enables researchers to uncover types of neural
feature selectivity that were not part of the
original hypothesis. The use of statistical
stimulus ensembles also permits investigators
to proceed without a good starting hypothesis
about the types of stimulus features that are
relevant in a given sensory region. As a result,
compared with models obtained using para-
metric stimuli, models derived using statistical
stimulus sets usually have better predictive
power when they are applied to predict the
neural responses in another stimulus context.

How do statistical approaches work in
general? The basic idea common to all these
methods is as follows. Prior to conducting an
experiment, researchers do not know which
stimulus features will modulate the responses
of the neuron under consideration. The goal
is to find these features, referred to as the
“relevant stimulus features,” because they may
either increase or decrease the neural spike
probability relative to its average value. To find
the relevant stimulus features, one can present
a large number of stimuli (∼20,000 to ∼50,000
different images or sound patterns, which is
roughly equivalent to a typical sensory episode
of ∼1 h). Although it is possible that none
of these patterns exactly matches a particular
neuron’s relevant feature(s), many (or at least
some) of the stimuli will be sufficiently close to
optimal to elicit some neural responses. Once
the neuronal responses to a large number of dif-
ferent stimuli have been recorded, the relevant
stimulus features for a given neuron, as well as
its preferred optimal stimulus, can be deduced
by analyzing how potentially subtle changes in
the neuronal firing rate are related to changes
in the corresponding stimuli. Typically, if a
stimulus sequence contains ∼104 stimuli, then
∼103 spikes will be collected, and this will be
sufficient to map out the profile of the relevant
stimulus features on a grid of ∼102 points.

Notably, stimuli do not need to be repeated
multiple times to enable analysis of the poten-
tially subtle changes in the neuronal firing rate
with small changes in the stimulus. In fact, for
most of the techniques described below, pre-
senting many similar (but not identical) stimuli
just once is preferable to having any chosen
stimulus presented multiple times, even though
multiple presentations of the same stimuli allow
us to average out the neuronal noise. This is
because presenting many similar stimuli allows
researchers not only to average out the neu-
ronal noise (assuming some continuity in the
stimulus/response function of a given neuron),
but also to better probe the stimulus/response
function at intermediate points.

This article discusses the advantages and
limitations of statistical techniques that are
currently available for characterizing neural
feature selectivity and that use noise-like and
natural stimuli. Particular attention is given
to the methods used to characterize neural
responses to natural stimuli, because such
stimuli are often the only type that can drive
robust responses in high-level sensory areas.
Largely omitted from this discussion are
techniques that can lead to a more effective use
of experimental time. The reader is directed
to a number of recent and excellent reviews
(Huys & Paninski 2009, Lewi et al. 2009,
Paninski et al. 2007) on how to optimize the
order in which stimuli should be presented to
maximize the accuracy of derived models given
the limitations of the length of the recording.

RECEPTIVE FIELD

The concept of a receptive field (RF) was first
introduced in somatosensation to describe
a part of the body surface where the reflex
can be elicited (Sherrington 1906). In sensory
systems, the term became much more widely
known after Hartline (1938) used it to describe
the firing properties of the retinal ganglion
cells (RGCs). One way to measure the RF of an
RGC in its original formulation is to plot the
neuronal firing rate as a function of light posi-
tion. Another way is to plot the pattern of light
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Figure 1
Geometric interpretation of the receptive field (RF) in the context of the linear and linear-nonlinear (LN) models. An example stimulus
is a natural image taken from a van Hateren data set (van Hateren & van der Schaaf 1998). The stimulus has d pixels in the horizontal
and vertical dimensions, which yields a stimulus of D = d2 dimensions. The RF taken to mimic properties of V1 neurons is also defined
in this space. The linear model predicts the spike probability as taking a projection between the stimulus and the RF. The LN model
adds a nonlinear gain function to account for such properties as rectification and saturation in the neural response.

intensities that, when presented on a screen,
would elicit the maximal firing rate from this
neuron. If the neuron is modeled as a linear
system, then the two ways of measuring the RF
are equivalent. However, because the neuronal
firing rate inevitably exhibits at least some non-
linear effects, for example, because it cannot
be negative, the two interpretations of the RF
concept will differ. Research has shown that the
second formulation, whereby the RF is inter-
preted as the optimal stimulus for the neuron,
is much more amenable to the generalizations
necessary to capture a rich variety of nonlinear
and contextual effects observed for sensory
neurons.

LINEAR MODEL

To predict the firing rate of a neuron to a
novel stimulus using a linear model, one can
compare how similar that stimulus is to the
optimal pattern, i.e., the RF. Mathematically,
this corresponds to multiplying stimulus values
pixel by pixel by the RF values and summing
across all pixels. In this interpretation, the RF
becomes the weighting function according to

which stimulus values are combined to obtain
the firing rate (Figure 1). The linear model also
includes the coefficient of proportionality be-
tween the stimulus similarity to the RF and the
neural firing rate. This coefficient of propor-
tionality, referred to as the “gain,” is the same
for all stimuli.

Before discussing various ways for build-
ing nonlinear models of neural responses, it is
useful to explore other ways of thinking about
the RF concept. If the RF has D pixels (which
could include temporal profiles), then it can also
be represented as a vector in a D-dimensional
space. To compare each new stimulus to the
RF, stimuli should be defined on the same grid
of pixel values as the RF. Then, each stimu-
lus can be considered as a vector in the same
D-dimensional space. The mathematical pro-
cedure described above of weighting each stim-
ulus value by the RF profile corresponds to the
computation of a dot product between the RF
and the stimulus for which we would like to
obtain the firing rate prediction. In geometri-
cal terms, this corresponds to taking a projec-
tion of a vector that describes the stimulus onto
the vector that describes the RF (Figure 1). In
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other words, this procedure corresponds to ei-
ther finding a stimulus component along the RF
or filtering stimuli by the RF.

Spike-Triggered Average

These geometrical interpretations suggest ways
to find the RF from neural recordings. When
only the stimulus component along the RF af-
fects the neural firing rate, averaging all stimuli
that have elicited a spike will result in an aver-
aging out of all the stimulus components along
directions in the stimulus space other than that
of the RF. This spike-triggered average (STA)
should then yield a vector that is proportional to
the RF (Figure 2). The STA could also contain
the average stimulus that is not associated with
spiking, which in many cases equals zero. If the
mean of all stimuli (both those that elicited and
those that did not elicit a spike) is nonzero, then
this term should be subtracted from the STA to
yield an estimate of the neuron’s RF.

One can prove that this intuition for com-
puting the STA is mathematically rigorous
if the stimulus ensemble is “circularly sym-
metric,” meaning that the stimulus ensemble
probes the neuron’s responses in all directions
equally (Chichilnisky 2001). If so, the STA
yields an unbiased estimate of the neuron’s RF
that will converge to the true RF as longer
recordings are obtained. One example of a cir-
cularly symmetric stimulus distribution is the
so-called white-noise stimulus ensemble, which
has zero mean and independent variations along
all stimulus dimensions that follow a Gaussian
distribution. More generally, the probability
distribution of observing a stimulus with a cer-
tain amplitude can be non-Gaussian. Such dis-
tributions are also of relevance. For example,
analyses of image intensities in the natural en-
vironment may follow a Laplace distribution
(Ruderman & Bialek 1994, Simoncelli &
Olshausen 2001). However, as long as the dis-
tribution is circularly symmetric, the STA will
correspond to the RF asymptotically.

What happens if the stimulus ensemble
is not circularly symmetric? For example, in
the natural environment, image intensities at

S1

S2

Spike
No spike

RF = STA

Figure 2
Illustration of how the receptive field (RF) of a neuron can be estimated from
its responses to white-noise stimuli by computing the spike-triggered average
(STA). Each dot represents a high-dimensional stimulus projected onto a
plane. Each stimulus was taken from an uncorrelated, white-noise Gaussian
distribution. Stimuli that elicited a spike are marked with red filled dots. Their
average yields a vector, which is the relevant stimulus dimension for generating
spikes from this neuron.

nearby locations are often positively correlated
with each other (Field 1987). As a consequence,
the sum of intensities at the two locations will
cover a much broader range of values than their
difference. Stimulus ensembles with such cor-
relations are not circularly symmetric. In other
words, variance is not equal along different
dimensions in the stimulus space (Figure 3b).
How does this affect our ability to estimate the
relevant stimulus features by computing the
STA? Consider the following hypothetical ex-
ample: The neuron’s spikes are triggered when
the light intensity at one location exceeds a
certain threshold value. The light intensities at
this location are correlated with light intensities
at nearby locations. The STA will, therefore,
show a peak in the light intensity at the location
that is relevant for eliciting neuronal spikes.
However, the nearby locations will also show
significant deviations from zero (Figure 3).
In technical terms, the STA provides a biased
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a b c
Gaussian stimuli with correlations

Example
stimuli

STA

Model RF

Decorrelated
STA

Natural
stimuli

Decorrelated
STA

MID

STARF
STA

RF

Spike
No spike

Figure 3
Differences between the spike-triggered average (STA) and the receptive field (RF) for noncircular probability distributions.
(a) Example of a non-Gaussian distribution of stimuli without correlations. (b) Example of a Gaussian distribution with correlations. In
both examples, the STA does not always yield a correct estimate of the RF. However, for the Gaussian distribution, it can be corrected
according to Equation 1 to yield an accurate estimate. (c) In the case of natural stimuli, which are non-Gaussian and have strong
correlations, even with corrections for the second-order correlations, the STA does not yield a correct RF estimate. However, the RF
can be estimated as a maximally informative dimension (MID).

estimate of the relevant stimulus feature.
Even if we collect an infinite amount of data,
the STA will not provide a correct estimate
of the relevant stimulus feature in cases
where stimulus values are correlated across
different dimensions. However, it is possible
to compensate for the presence of stimulus
correlations with one relatively simple step.
In the linear model, the effect of stimulus
correlations is limited to pairwise correlations
between different stimulus values, which are
specified by the stimulus covariance matrix.
To obtain an unbiased estimate of the relevant
stimulus dimension from the STA, one simply
needs to multiply it by the inverse of the
stimulus covariance matrix (Rieke et al. 1997;
Theunissen et al. 2000, 2001):

vi = C−1
ij (STA) j , 1.

where vi are components of the relevant
stimulus feature, matrix Cij is the stimulus
covariance matrix, (STA) j represents compo-
nents of the STA, and summation over the
repeated index j is implied. The covariance

matrix is obtained by averaging stimulus
deviations from the mean. This procedure
is known as decorrelation or deconvolution.
The resultant vector is termed the decor-
related STA (Rieke et al. 1997; Theunissen
et al. 2000, 2001) and is analogous to deconvo-
lution that is sometimes done in microscopy to
obtain a deblurred image by compensating for
the microscope’s point spread function (Press
et al. 1992). The stimulus covariance matrix
is the analogue of the point spread function in
the context of neural coding. It captures the
expected stimulus values at nearby locations
given a “point source” at the chosen location.

Although correcting the STA for stimulus
correlations according to Equation 1 is a
simple linear operation, practical implemen-
tations can be difficult because a very strong
asymmetry is often found in the range of stimu-
lus values contained within the input ensemble.
This is especially true for stimuli derived from
the natural environment. Here, the intensities
averaged across space (the image) or time
have a much wider range of values compared
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with the range of values explored by their
differences. More generally, components of
natural stimuli at high spatial and temporal
frequencies are much less well sampled than
are components corresponding to low spatial
and temporal frequencies (Field 1987). Because
of this asymmetry, some stimulus dimensions
are much less well probed than others. The
process of compensating for the difference in
sampling along different stimulus dimensions
according to Equation 1 amplifies noise at the
stimulus dimensions that were less well probed.
In mathematical terms, the covariance matrix
C is ill-defined, and its eigenvalues have widely
different amplitudes. In the context of natural
stimuli, small eigenvalues of the covariance
matrix correspond to high temporal and spatial
frequencies and reflect the small power found
at these frequencies.

The division of the STA by the stimu-
lus covariance matrix amplifies noise at the
components that are underrepresented in the
stimulus. To overcome these issues, one can
perform “regularization.” This process is based
on the observation that at some frequencies the
amount of noise will exceed the measured sig-
nal; for those frequencies, it is better to assume
that the signal is equal to zero. Deciding which
stimulus components are sufficiently well sam-
pled to be included often has to be determined
on a neuron by neuron basis and in some cases
can introduce additional biases that are not
present in the decorrelated STA computed
without regularization according to Equation 1
(Sharpee et al. 2008). Several advanced statis-
tical techniques have been developed to tackle
this issue by incorporating priors such as STA
smoothness and sparsity (Ahrens et al. 2008,
Christianson et al. 2008, Paninski et al. 2007,
Park & Pillow 2011b, Sahani & Linden 2003).

LINEAR-NONLINEAR MODEL

The linear model can often well characterize
neural feature selectivity by specifying the
neuron’s RF (Theunissen et al. 2000, 2001).
However, the linear model cannot account
for many nonlinear and contextual effects in

the neural response (Gilbert & Wiesel 1990,
Nothdurft et al. 1999, Schwartz et al. 2007,
Series et al. 2003, Sharpee & Victor 2008,
Sillito & Jones 1996, Zipser et al. 1996). One
way to generalize the linear model of neural fea-
ture selectivity to capture some of the nonlinear
aspects of the neural computation is to assume
that these nonlinear effects are in some sense
weak. Then, one can write the nonlinear trans-
formation as a power series containing linear,
quadratic, and higher-order terms. This expan-
sion corresponds to the Volterra/Wiener series
approximation (Marmarelis & Marmarelis
1978, Victor & Purpura 1998, Victor &
Shapley 1979). Given enough terms in the
expansion, the series is guaranteed to approx-
imate any arbitrary function well. However, in
practice, this approximation can extend only
to linear and quadratic terms. Thus, in the
Wiener approach, only quadratic functions of
the stimulus can be modeled. Unfortunately,
neural responses often contain much sharper
nonlinearities than can be described by a
quadratic function. For example, in a simple
threshold model where the neuron produces
a spike only when the stimulus value exceeds
a certain value, the quadratic function is too
smooth to approximate the nonlinearity well.

A very elegant, simple, yet agile way to cap-
ture sharp nonlinearities in the neural response
is provided by the so-called linear-nonlinear
(LN) model (de Boer & Kuyper 1968, Meister
& Berry 1999, Victor & Shapley 1980). In
statistics, this model is also known as the gener-
alized linear model (Weisberg & Welsh 1994).
Whereas the linear model requires that the
firing rate of a neuron depend on the stimulus
similarity to the RF (computed as the stimulus
projection onto the RF, a purely linear opera-
tion), the LN model allows the firing rate to be
an arbitrary nonlinear function of the stimulus
projection on the RF (Figure 1). This function
is often referred to as the nonlinear gain
function to emphasize that the gain between
the firing rate and the stimulus projection onto
the RF now depends on this projection. In the
LN model, the RF is often referred to as the
filter or the relevant stimulus dimension.
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The LN model has many computa-
tional advantages. For example, its linear
component—the relevant dimension repre-
senting the RF—can be found using the linear
techniques described above if the stimulus
ensemble is circularly symmetric (Chichilnisky
2001, de Boer & Kuyper 1968) or, for certain
nonlinearities, in the more general case of finite
energy band-limited (Lazar & Slutskiy 2012,
Victor et al. 2006, Victor & Knight 2003). The
circularly symmetric stimulus includes the case
of the white-noise Gaussian stimulus with-
out correlations. The linear techniques also
work for determining the linear part of the LN
model if stimuli are correlated but are Gaussian
(Ringach et al. 2002, Sharpee et al. 2004) or
for models with specific nonlinearities. In this
case, the RF is computed as the decorrelated
STA according to Equation 1 (Theunissen
et al. 2000, 2001). If necessary, regularization
may also be used. However, as in the case of the
linear model, doing so may introduce biases
into the RF estimates (Sharpee et al. 2008). The
mathematical proof that the linear component
of the LN model can be estimated with linear
techniques in the case of Gaussian stimuli relies
on the special property of Gaussian stimuli:
Here, the average of any number of Gaussian
variables is equal to the sum of products of
pairwise averages between the variables (de
Boer & Kuyper 1968). In other words, by
specifying the stimulus covariance matrix,
researchers can fully explain the statistics of
stimulus correlations in terms of pairwise
correlations between different stimulus values.

In a more general case, where correlations
of higher than second order cannot be pre-
dicted from the knowledge of pairwise stimulus
correlations, the linear techniques do not pro-
vide unbiased estimates of the RFs of the LN
model. In effect, the procedure for estimating
the linear and the nonlinear parts can no longer
be done independently of one another, as was
done for the Gaussian stimuli. Importantly,
for sensory neuroscience, natural stimuli in
visual, auditory, or olfactory modalities exhibit
strong non-Gaussian correlations that extend
beyond the second order (Ruderman 1997,

Simoncelli 2003, Singh & Theunissen 2003,
Vickers et al. 2001). The presence of strong
higher-order correlations in the stimulus
ensemble is thought to be driven by the fact
that natural stimuli are composed of objects.
By contrast, the presence of Gaussian second-
order correlations typically yields “cloud-like”
stimulus patterns that are devoid of edges and
object boundaries (Field 1987). Examples of
such stimuli are provided in Figure 3b.

Maximally Informative Dimensions

To characterize the feature selectivity with
natural stimuli and other stimuli with non-
Gaussian correlations, the presence of higher-
order stimulus correlations in such stimulus
ensembles must be taken into account. One
approach is to evaluate the relevance of differ-
ent stimulus dimensions for eliciting the neural
response using measures that do not rely exclu-
sively on the first- and second-order moments
of the stimulus distributions. The Kullback-
Leibler (KL) distance between probability dis-
tributions provides such a measurement (Cover
& Thomas 1991). When the two distributions
are the same, this distance is zero. In addition,
when the KL distance is computed between
two probability distributions, one of which
reflects all stimuli P (s) and the other stimuli
that elicited a spike P (s | spike), it corresponds
to the mutual information between stimuli and
the neural spike rate (Brenner et al. 2000):

I (v) =
∫

dsP (s | spike) log2

[
P (s | spike)

P (s)

]
.

If we look only at the probability distributions
along a single dimension or a set of stimulus
dimensions, we obtain the mutual Shannon
information between these dimensions and the
neural spike rate (Adelman et al. 2003, Sharpee
et al. 2004). If the spike probability does not
depend on this stimulus dimension, then these
two probability distributions (one computed
across all stimuli and the other for stimuli that
elicited a spike) will be the same, indicating that
these dimensions carry zero information about
the neural spikes. By contrast, the dimensions
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that capture all the information in the neural
response correspond to those upon which the
decision to spike was based. Therefore, the RF
of the LN model may be found by searching
for the maximally informative dimension about
the neural response (Sharpee et al. 2004). Be-
cause the KL distance upon which the mutual
information is based is sensitive to any devi-
ations between the probability distributions
regardless of whether these deviations are de-
scribed by differences in the first-, second-, or
higher-order moments of the distribution, this
procedure can be used with different kinds of
stimuli, including natural stimuli (Figure 3c).

The proof that the RF of the LN model
corresponds to the maximally informative di-
mension about the neural response is based on
the so-called data-processing inequality (Cover
& Thomas 1991). This inequality states that
adding any extra processing of inputs can only
decrease the amount of information about the
output of a system. Thus, if we take stim-
ulus components along the same dimensions
as were considered in the process of generat-
ing the neural spikes, then no extra processing
steps are added. Otherwise, if we take stimulus
components along dimensions that do not ex-
actly correspond to the dimensions that elicited
the neural spikes, then the output informa-
tion will be reduced. Finding the RF of the
LN model is equivalent to the maximum likeli-
hood fitting of the LN model (Kouh & Sharpee
2009). Thus, although other distance measures
can be used (Paninski 2003, Sharpee 2007) to
compare changes in the probability distribu-
tions between all presented stimuli and stimuli
that elicited a spike, information maximization
yields the smallest variance in RF estimates ver-
sus other unbiased methods.

Multidimensional Feature Selectivity

The LN model discussed above describes the
neural responses as being triggered according
to the degree to which a single stimulus feature
is present in the stimulus. However, responses
of many types of sensory neurons exhibit a vari-
ety of contextual effects wherein their responses

v1

v2

v3

v4

P(y | x1, x2, x3, x4)

x1

x2

x3

x4

Figure 4
Schematic of a linear-nonlinear model with multiple relevant stimulus features.

to the primary stimulus feature are modulated
by the presence of other stimulus features in the
stimulus. Examples include cross-orientation
suppression (Carandini et al. 1998, Priebe &
Ferster 2006) and contrast-invariant orienta-
tion tuning for V1 cells (Troyer et al. 1998).
Marr (1982) has argued that to distinguish a
faint edge of a given orientation from a brighter
edge of a nearby orientation requires that an
orientation-selective neuron be suppressed
by the presence of edges orthogonal to its
preferred orientation. Another example is
the feature selectivity of complex cells in the
primary visual cortex whose responses indicate
the presence of an edge while allowing for some
degree of position invariance. This property
can be modeled with several visual features that
correspond to Gabor patterns with different
spatial phases (Adelson & Bergen 1985). To
account for these aspects of neural coding, the
traditional LN model is generalized such that
the spike probability is a nonlinear function of
several stimulus components (Rust et al. 2005).
Similar to the case of a one-dimensional LN
model, the nonlinearity can take an arbitrary
shape, but now with respect to several stimulus
components (Figure 4).

Spike-Triggered Covariance

How can we determine these relevant stimulus
features from the neural responses? The STA
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is one of these features, and it is computed by
analyzing the change in the mean between the
stimulus distribution conditional on a spike and
the distribution of all stimuli that were pre-
sented in the experiment (Figure 2). Analyz-
ing the change in the variance between these
stimulus distributions allows one to find all the
relevant dimensions in cases where the stimuli
are described by a Gaussian distribution (Bialek
& de Ruyter van Steveninck 2005, de Ruyter
van Steveninck & Bialek 1988, Schwartz et al.
2006) or by a circularly symmetric distribution
(Samengo & Gollisch 2013). The intuition be-
hind this procedure is that any dimension along
which the variance is different from those ex-
pected a priori is associated with neural spikes.
Unlike the change in the mean that defines a
single dimension, the variance can differ along
many dimensions.

In mathematical terms, the spike-triggered
covariance method consists of two steps. The
first step is to compute a difference between the
covariance matrix of all stimuli and that of the
stimuli that elicited a spike:

�C = C − C spike.

The second step is to diagonalize this matrix
to find dimensions along which the variance
is significantly different from zero. The vari-
ance is encoded in the eigenvalues of matrix
�C . The eigenvectors that correspond to the
significant eigenvalues describe the dimensions
along which the variance is significantly dif-
ferent between the ensemble of stimuli that
elicited a spike and that of all stimuli. To de-
termine the significance, these two steps are re-
peated using shuffled spike trains that contain
as many spikes as the recorded spike trains. An-
other way of breaking the correlations between
stimuli and spikes that preserves all the struc-
ture in the neural spike trains is to shift forward
these spike trains relative to the stimuli (Bialek
& de Ruyter van Steveninck 2005). The spike-
triggered covariance can, in principle, be used
in the presence of stimulus correlations (Bialek
& de Ruyter van Steveninck 2005, Schwartz
et al. 2006). To obtain the relevant dimensions

in this case, the eigenvectors of matrix �C must
be divided by the stimulus covariance Cij in
a manner analogous to Equation 1. However,
preliminary evidence indicates that this proce-
dure can present more difficulties to execute in
practice than arise when removing the effect of
correlations from the STA (Aljadeff et al. 2013).

Maximally Informative Subspaces

Multiple relevant stimulus dimensions can also
be found by maximizing the mutual informa-
tion (Sharpee et al. 2004). Several dimensions
that together account for a maximal amount
of information in the neural response may be
obtained by computing the KL distance be-
tween the probability distribution along these
dimensions for all presented stimuli and the
distribution for the stimuli that elicited a spike.
For example, a pair of maximally informative
dimensions may be found by maximizing

I (v1, v2) =
∫

d x1d x2 Pv1,v2 (x1, x2 | spike) log2

×
[

Pv1,v2 (x1, x2 | spike)
Pv1,v2 (x1, x2)

]
. 2.

This equation yields the KL distance between
the probability distribution Pv1,v2 (x1, x2) of
stimulus projections x1 and x2, respectively,
along dimensions v1 and v2, and the probability
distribution Pv1,v2 (x1, x2 | spike) of these pro-
jections across the stimuli that elicited a spike.
Accordingly, a two-dimensional probability
distribution must be sampled to jointly charac-
terize two dimensions in terms of the amount
of information about the neural responses that
they provide.

In principle, one can find N maximally in-
formative dimensions by sampling the stim-
ulus probability distribution across N dimen-
sions, although doing so is difficult to achieve
in practice for more than three or four dimen-
sions. Qualitatively, the number of samples that
are available to map out the spike-conditional
distribution Pv1,v2 (x1, x2 | spike) is related to
the number of recorded spikes. This is often
the limiting factor in the computation of in-
formation. Note that the stimulus distribution
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Pv1,v2 (x1, x2) is easier to sample, and in some
cases, an analytic expression may be available.
These constraints, known as the curse of dimen-
sionality (Belleman 1961), limit the number of
dimensions that can be simultaneously char-
acterized according to the mutual information
(Rowekamp & Sharpee 2011) as well as other
divergence measures (Paninski 2003), which in-
clude the percentage of explained variance.

In some cases, it is possible to bypass the
curse of dimensionality by searching for the rel-
evant dimensions in an iterative fashion, for ex-
ample, by first finding the relevant dimension,
then finding the second relevant dimension in
the subspace orthogonal to the first, etc. (Rapela
et al. 2010, Rapela et al. 2006, Rowekamp &
Sharpee 2011). Typically, this procedure works
well when stimuli are not correlated. However,
with uncorrelated stimuli, the relevant dimen-
sions may also be found using spike-triggered
covariance, which is a much simpler procedure.
When stimuli are correlated, sequential search-
ing can find the first relevant dimension accu-
rately if stimulus correlations are Gaussian. The
sequential search for secondary relevant dimen-
sions is complicated by the presence of stimulus
correlations: The sequential search can return
a dimension that accounts for a large amount
of information, not because it is relevant to the
neural response, but because stimulus compo-
nents along this dimension are strongly cor-
related with the primary stimulus dimension
(Rowekamp & Sharpee 2011).

QUADRATIC NONLINEAR
MODELS

Maximally Informative
Quadratic Models

A different approach for finding multiple rel-
evant stimulus dimensions from the neural re-
sponses to natural stimuli is to modify the struc-
ture of the LN model. The model considered
above allows for an arbitrary nonlinear func-
tion of a few stimulus components. A recently
proposed alternative is to describe the spike
probability as an arbitrary nonlinear function

of a quadratic form of stimuli (Fitzgerald et al.
2011a, Rajan & Bialek 2012):

P (spike | s) = F (s ivi + s i Jijs j ), 3.

where the sum over repeated indices is implied
and F is an arbitrary nonlinear function. The
parameters of the model are vi , which is analo-
gous to the RF, and Jij. By analogy with the LN
model, this model may be termed the quadratic-
nonlinear (QN) model. The structure of the
QN model is motivated by the need to cap-
ture such properties of sensory neurons as di-
visive normalization and contrast gain control
(Carandini et al. 1997) where responses of one
neuron are normalized by a squared output of
the responses of other neurons in the circuit.
As discussed by Rajan & Bialek (2012), the QN
model is also well matched both to the proper-
ties of complex cells (Adelson & Bergen 1985)
in the primary visual cortex and to nonphase
locked auditory neurons (Hudspeth & Corey
1977).

The QN model is also congruent with some
types of the LN model. For example, the matrix
J can have a low-dimensional structure. In such
cases, the neuronal response will be described
as a quadratic function of a small number of
stimulus components, as in the standard LN
model. However, the LN model can, in princi-
ple, describe arbitrary interactions between the
relevant dimensions, whereas these interactions
are limited in the QN model (Equation 3) to
sums and differences between the squares of rel-
evant stimulus components. Nevertheless, the
quadratic model provides a way forward to de-
termine multiple relevant stimulus dimensions
from the neural responses to natural stimuli.
At the same time, by incorporating an arbitrary
nonlinearity, the QN model represents an ad-
vance over the Wiener approach where in prac-
tice only a quadratic form of the stimulus can
be estimated.

How can we estimate the parameters of the
QN model from the neural responses to natural
stimuli? As in the LN model, this can be done
by finding its parameters—the values of the lin-
ear term v and the quadratic matrix J—that ac-
count for the maximal amount of information
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in the neural response (Fitzgerald et al. 2011a,
Rajan & Bialek 2012). All the arguments for
self-consistency of estimators carry over from
the LN model because the QN model can be
reformulated as an LN model with respect to
the expanded stimulus {s i ; s i s i }, where indices i
and j go from 1 to D (the dimensionality of the
original stimulus). Even though the resulting
expanded stimulus will have a very large dimen-
sionality, analysis of model neurons suggests
that the procedure remains feasible (Fitzgerald
et al. 2011a). As in the spike-triggered covari-
ance methods, diagonalizing the matrix J of the
QN model will yield the stimulus dimensions
that are relevant for spiking. Finding the param-
eters of the QN or LN models by maximizing
information is equivalent to a maximum likeli-
hood estimation, at least for a Poisson model
of spiking (Kouh & Sharpee 2009). If the non-
linearity F in the QN model is constrained to
be an exponential, then prior assumptions can
be incorporated via maximum likelihood opti-
mization onto the smoothness of the relevant
stimulus features or the sparseness of their val-
ues (Park & Pillow 2011a).

Minimal Quadratic Models:
A Maximum Noise Entropy Approach

The approaches described above rely on
finding a suitable model structure to describe
the neural circuit and then fitting parameters of
these models according to the chosen criterion,
such as information maximization, maximum
likelihood estimation, or percent explained
variance. For complex and hierarchical circuits,
the appropriate model structure can be difficult
to determine. An alternative to finding a suit-
able model structure to fit the neural responses
is to construct what is known as a minimal
model. The goal is to construct a model that
is consistent with a given set of measurements
of the neural responses and stimuli, but that
is otherwise as unconstrained as possible.
This approach is theoretically similar to the
maximum entropy principle ( Jaynes 1957) and
in machine learning is known as the conditional
Markov random fields (Lafferty et al. 2001).

According to the maximum entropy princi-
ple, when many distributions may be consistent
with a given set of measurements, the dis-
tribution that has the maximal entropy (least
constrained) should be chosen to obtain the
least-biased model. Such a choice often yields
models with the best predictive power on a
novel set of data ( Jaynes 2003). Recent studies
show that this approach is fruitful in charac-
terizing the responses of neural populations
(Schneidman et al. 2006, Shlens et al. 2006).
In the current discussion, the aim is to adopt
this principle to build minimal models of
input/output functions. Thus, the focus is on
input/output functions for single neurons,
although extensions to multiple neurons are
certainly possible (Globerson et al. 2009,
Granot-Atedge et al. 2012).

To build a minimal model of the neural in-
put/output function, the chosen model should
yield the highest entropy of the neural response
for a given stimulus, averaged over all stim-
uli. The corresponding quantity is known as
the noise entropy (Brenner et al. 2000, Strong
et al. 1998). For binary responses (at sufficiently
small time resolution, all neural responses are
binary if patterns of spikes in time are not con-
sidered), the maximum noise entropy model has
three appealing properties. First, this model is
analytically solvable and the response function
has a simple structure: It is a logistic function
whose argument is a sum of stimulus parame-
ters whose correlations with the neural response
represent the constraints that the model needs
to satisfy (Fitzgerald et al. 2011b). For example,
the minimal model that is consistent with the
measurements of the STA and spike-triggered
covariance is

P (spike | s) = 1/(1 + exp(c + s ivi + s iJijs j )).

Here, parameters of the model are c , vi ,
and Jij. These parameters are adjusted such
that the STA and spike-triggered covariance
predicted by the model match those measured
experimentally. The relevant stimulus dimen-
sions can be found by diagonalizing the matrix
J, just as in the QN model.
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Second, although these models are similar,
the main difference between the minimal
quadratic model and the QN model is that the
nonlinearity is a logistic function in the former
but can take an arbitrary form in the latter.
Thus, the parameters of a minimal model
can be found through a convex optimization
that is not plagued by local minima. This
practical advantage of minimal models makes
it possible to find their parameters even with
high-dimensional stimuli. For example, in the
analysis of simulated neurons with six relevant
dimensions, the relevant stimulus dimensions
from a minimal quadratic model were a slightly
better match to the model dimensions than the
dimensions from a maximally informative QN
model (Fitzgerald et al. 2011a). However, in
cases where only one or two relevant dimen-
sions are needed, the maximally informative
LN model yields a better match to model di-
mensions than either the maximally informative
QN model or the minimal quadratic model.

Third, minimal models often make it
possible to quantify, in information-theoretic
terms, the relative importance of different
constraints (Figure 5). For example, matching
the minimal model to the experimental data
in terms of the mean spike rate (which can be
considered a zeroth order constraint because it
does not involve stimuli) fully determines the
overall entropy of the neural responses if they
are binary or Poisson. With the entropy of the
neural response fixed, maximizing the noise
entropy is equivalent to seeking the model that
provides the least amount of information while
satisfying the necessary constraints (Globerson
et al. 2009). As pointed out by Globerson et al.
(2009), the information captured by the model
that provides the minimal amount of informa-
tion while satisfying a given set of constraints is
a direct measure of the information content of
these constraints (Figure 3). In general, min-
imally informative models are not analytically
solvable, but in cases where they coincide with
models computed by maximum noise entropy,
the analytical solution is provided by the
logistic function mentioned above. In addition
to the binary and Poisson responses, it is

Amount constrained<y>

M
axim

um noise entropy limit

In
fo

rm
at

io
n 

I (
y;

x)

Idata

(No models exist here)

0

Figure 5
Geometric intuition of information transmission in minimal models. For a
given set of constraints, the maximal noise entropy model provides the smallest
amount of information between the neural response y = 0,1 and the stimulus
x. The point of origin with zero information corresponds to the model where
only the mean spike rate <y> is constrained; this model carries no information
about the stimulus. As more constraints are added, information captured by the
minimal model will approach the true information in the data Idata. As a result,
the information content of any constraint can be quantified. In contrast, a
maximally informative model is used to find the value of parameters that
account for the greatest amount of Idata in one step. Although optimization to
find the maximally informative set of parameters is nonconvex, the
corresponding optimization for the minimal models is convex. Given the right
set of constraints, both models will converge to the same input/output function
of the neuron.

possible to find a minimally informative model
by maximizing noise entropy for Gaussian
neural responses through the addition of the
mean and variance of the spike rate to the set
of constraints. Again, this is because the mean
and variance are sufficient to specify the
entropy of the neural response across a set of
stimuli. Finally, the emergence of the logistic
function as the least-constrained model that
represents the necessary constraints between
inputs and outputs suggests a possible func-
tional explanation for the ubiquity of logistic
input/output functions in systems biology,
ranging from transcription control to neural
gain functions (Clemens et al. 2012, Fairhall
et al. 2006, Sharpee et al. 2011, Tyson et al.
2003). It can also explain nonmonotonic gain
functions, which are especially common in the
auditory system wherein the neurons encode
not just the mean of the relevant stimulus
feature, but also its variance (Figure 6b).
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Figure 6
Maximum noise entropy models can account for variety of nonlinear effects.
(a) The logistic function arises when the neural response encodes stimuli
linearly. (b) The logistic function of a quadratic argument can be observed in
models where the neural response encodes both the mean and the variance of
stimulus components along the relevant stimulus features. In this case, the
nonlinear gain function is nonmonotonic. (c) Maximum noise entropy models
based on two relevant stimulus features can characterize a variety of nonlinear
computations when extended to moments higher than two. These include
“ring,” “bimodal,” and “crescent-shaped” nonlinearities previously observed in
the retina (Fairhall et al. 2006).

OUTLOOK

Ultimately, computational methods for char-
acterizing neural feature selectivity will be able
to relate the neural responses to the underlying
neural circuitry even in cases where many stages
of nonlinear processing separate stimuli from
the recorded neural responses. The progress
that has been made in the field over the past
ten years goes a long way toward this goal
by recovering the multiple stimulus features
that are relevant to the responses of high-level
sensory neurons. However, much remains to
be done. In particular, the stimulus features
upon which the responses of a given neuron are
triggered usually have specific relationships to

each other, as indicated by their co-occurrence
in the natural environment. However, orthog-
onal representations of these features often
make it difficult to deduce these relationships.
For example, when the neural responses are
triggered by the same image feature that is
centered at different positions in the visual
field, the features obtained by spike-triggered
covariance make it difficult to guess the compu-
tational relationship between the features (Rust
et al. 2005). Recent methods are beginning
to characterize the neural feature selectivity
by taking invariance directly into account
(Eickenberg et al. 2012, Vintch et al. 2012).
The resulting models can economically ac-
count for the observed neural responses as
triggered by a small number of image features,
while allowing for their different positioning
within the visual field. In other sensory sys-
tems, relevant invariance properties are either
more difficult to parameterize than position
invariance or are not known. One possible way
to discover types of invariance present in the
responses of a particular neuron is to find such
linear combinations of the relevant stimulus
features that make it possible to describe the
observed responses as logical OR operations
with respect to a set of inputs (Kaardal et al.
2013). Given a set of relevant stimulus features,
finding the appropriate linear combinations
of features is numerically and computationally
easy, although the methods so far have not
been tested in higher-level sensory areas. The
hope is that, by building on combinations of
the available computational tools to identify
receptive fields, future works will be able to
characterize the neural feature selectivity in
the presence of complex and, in some cases,
still unknown types of invariance of high-level
sensory neurons in vision and other sensory
modalities.
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