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The human visual system is capable of recognizing complex objects even
when their appearances change drastically under various viewing condi-
tions. Especially in the higher cortical areas, the sensory neurons reflect
such functional capacity in their selectivity for complex visual features
and invariance to certain object transformations, such as image transla-
tion. Due to the strong nonlinearities necessary to achieve both the selec-
tivity and invariance, characterizing and predicting the response patterns
of these neurons represents a formidable computational challenge. A re-
lated problem is that such neurons are poorly driven by randomized
inputs, such as white noise, and respond strongly only to stimuli with
complex high-order correlations, such as natural stimuli. Here we de-
scribe a novel two-step optimization technique that can characterize both
the shape selectivity and the range and coarseness of position invariance
from neural responses to natural stimuli. One step in the optimization
is finding the template as the maximally informative dimension given
the estimated spatial location where the response could have been trig-
gered within each image. The estimates of the locations that triggered
the response are updated in the next step. Under the assumption of a
monotonic relationship between the firing rate and stimulus projections
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on the template at a given position, the most likely location is the one that
has the largest projection on the estimate of the template. The algorithm
shows quick convergence during optimization, and the estimation results
are reliable even in the regime of small signal-to-noise ratios. When we
apply the algorithm to responses of complex cells in the primary visual
cortex (V1) to natural movies, we find that responses of the majority of
cells were significantly better described by translation-invariant mod-
els based on one template compared with position-specific models with
several relevant features.

1 Introduction

The ability to recognize objects despite large variations in their position rela-
tive to us is a hallmark of animal vision (DiCarlo & Maunsell, 2003; Edelman,
1999; Riesenhuber & Poggio, 1999; Rolls, 2000; Ullman, 1996). Changes in
the relative position can cause large changes in the retinal image that greatly
exceed the differences between retinal images generated by different objects
presented at the same location (when differences are quantified using linear
projections). The problem is complicated by changes in the retinal images
caused by scaling and rotation, as well as differences in pose, and illu-
mination. For these reasons, understanding the computations required for
mediating robust object recognition remains a challenging frontier of both
computer science and neuroscience. Although this problem is solved in the
brain and fast recognition within a fraction of second is possible (Thorpe,
Fize, & Marlot, 1996), much remains to be understood about the underlying
neural mechanisms. In this letter, we describe a spike-triggered method that
can help map out how visual stimuli are represented in the brain.

One of the obstacles for characterizing the feature selectivity of these
high-level visual neurons is that because such neurons are tuned to highly
specific combinations of visual features, they do not respond well to noise
and other stimuli without higher-order correlations. Therefore, up to now,
feature selectivity of high-level visual neurons has been primarily studied
with respect to reduced stimuli (Saleem, Tanaka, & Rockland, 1993; Wang,
Tanaka, & Tanifuji, 1996; Wang, Tanifuji, & Tanaka, 1998) that are optimized
for a particular neuron, sets of controlled naturalistic stimuli, such as iso-
lated face images in a blank background (Desimone, Albright, Gross, &
Bruce, 1984; Kobatake & Tanaka, 1994; Logothetis, Pauls, & Poggio, 1995;
Rust & DiCarlo, 2010; Zoccolan, Kouh, Poggio, & DiCarlo, 2007), or pa-
rameterized stimulus sets where orientation, curvature, and spirality have
been systematically varied (Desimone et al., 1984; Desimone & Schein, 1987;
Gallant, Braun, & Van Essen, 1993; Gallant, Connor, Rakshit, Lewis, & Van
Essen, 1996; Hegde & Van Essen, 2000, 2007; Kobatake & Tanaka, 1994; Pa-
supathy & Connor, 1999, 2001). These studies reveal the complexity of the
feature selectivity of neurons in the ventral stream, including selectivity to
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faces and hands, but they leave open the possibility that the optimal stim-
ulus for a given neuron may never have been presented. It has also been
difficult to predict responses to novel stimuli that have not been used in the
experiment.

Instead of using a set of reduced stimuli, an alternative approach is to
take advantage of the fact that neurons throughout the ventral stream re-
spond robustly to natural visual stimuli. Although average response rates
to natural stimuli may be lower than to the optimal stimulus (Baddeley
et al., 1997), they are still significantly higher than those elicited by noise
inputs (Rainer, Augath, Trinath, & Logothetis, 2001). At the same time, nat-
ural stimulus ensembles can be made sufficiently diverse that they sample
the neural response along many directions in the stimulus space, albeit
not uniformly (Dong & Atick, 1995; Field, 1987; Ruderman & Bialek, 1994;
Simoncelli & Olshausen, 2001; van Hateren & Ruderman, 1998). This ap-
proach has the potential to make it possible to characterize the feature
selectivity of neurons without making prior assumptions about the actual
type of optimal stimulus features. The approach is based on the linear-
nonlinear (LN) model (Chichilnisky, 2001; de Boer & Kuyper, 1968; Meister
& Berry, 1999; Schwartz, Pillow, Rust, & Simoncelli, 2006; Victor & Shapley,
1980), which describes the neural response as an arbitrary nonlinear func-
tion of the stimulus components along the relevant stimulus dimensions.
Each of the relevant stimulus dimensions represents a spatiotemporal filter
applied to incoming stimuli to account for neural responses. While original
methods for finding receptive fields were designed to work with noise in-
puts (de Boer & Kuyper, 1968; Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997), analogous methods that are valid with natural stimuli have
been recently developed for both linear (Gill, Zhang, Woolley, Fremouw,
& Theunissen, 2006; Ringach, Hawken, & Shapley, 2002; Ringach, Sapiro,
& Shapley, 1997; Theunissen et al., 2001; Theunissen, Sen, & Doupe, 2000;
Woolley, Gill, & Theunissen, 2006; Woolley, Fremouw, Hsu, & Theunissen,
2005), and LN models by several groups (Paninski, 2003; Sharpee, Rust, &
Bialek, 2004; Sharpee, 2007; Sharpee et al., 2006).

Despite the success of spike-triggered methods in characterizing the se-
lectivity of V1 neurons to multiple stimulus features (Chen, Han, Poo, &
Dan, 2007; Felsen, Touryan, Han, & Dan, 2005; Horwitz, Chichilnisky, & Al-
bright, 2007; Rapela, Mendel, & Grzywacz, 2006; Rapela, Felsen, Touryan,
Mendel, & Grzywacz, 2010; Rust, Schwartz, Movshon, & Simoncelli, 2005;
Schwartz et al., 2006; Touryan, Lau, & Dan, 2002; Touryan, Felsen, & Dan,
2005), both the models of the neural response and the statistical methods
used to select them will likely need to be significantly modified in order to
be useful in extrastriate visual areas. The main reason is that in retinotopic
space, accounting for translation-invariant selectivity, even to one relevant
stimulus feature, requires a model with a large number of relevant dimen-
sions. Although each of the relevant dimensions represents the same image
feature, they differ in their centering, leading to a high dimensionality of
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the resultant LN model. Established methods that can simultaneously esti-
mate a large number of relevant dimensions are guaranteed to work only
with gaussian stimuli, such as white noise or correlated gaussian noise
(Paninski, 2003; Schwartz et al., 2006). These include the methods of spike-
triggered covariance (Bialek & de Ruyter van Steveninck, 2005; de Ruyter
van Steveninck & Bialek, 1988; Schwartz et al., 2006; Schwartz, Chichilnisky,
& Simoncelli, 2002), its information-theoretic generalization (Pillow & Si-
moncelli, 2006), and projection pursuit (Rapela et al., 2006; Rapela, Felsen,
Touryan, Mendel, & Grzywacz, 2010). On the other hand, methods that
estimate multiple filters from neural responses to natural stimuli (Sharpee
et al., 2004) can estimate only a few filters because of the need to sample the
joint multidimensional dependence of the spike probability on the relevant
stimulus components (Rowekamp & Sharpee, 2011; Schwartz et al., 2006).
It should be noted that spike-triggered covariance can be applied with nat-
ural stimuli (as in Touryan et al., 2005), but estimation methods that take
higher-order stimulus statistics into account, such as projection pursuit and
maximally informative dimensions, yield models with improved predictive
power in accounting for V1 neural responses (Rapela et al., 2010).

Our approach here is to reduce the dimensionality by searching for one
or several (in practice, two or three) image templates while allowing for the
possibility that they could be jointly shifted to different positions within the
visual space to elicit a spike. The method we propose here combines ideas
from methods that address translation invariance but work primarily with
noise inputs (Dimitrov, Sheiko, Baker, & Yen, 2009; Nishimoto, Ishida, &
Ohzawa, 2006; Tjan & Nandy, 2006) and ideas from methods that can char-
acterize feature selectivity of position-specific models with natural stimuli
(e.g., Sharpee et al., 2004, 2006). The overall goal is to address what to our
knowledge is a previously unsolved problem of how to characterize the fea-
ture selectivity of neurons that exhibit translation invariance based on their
responses to natural stimuli. We propose to search for the most relevant
feature (or a conjunction of features) for a given neuron, assuming that the
probability of triggering the neural response is the same for all retinotopic
positions to which the neuron responds (see Figure 1). This is an approxi-
mation, because real neurons do not exhibit perfect translation invariance;
rather, their responses decline with distance from the receptive field center
(Boussaoud, Desimone, & Ungerleider, 1991; Desimone et al., 1984; Gross,
Bender, & Rocha-Miranda, 1969; Gross, Rocha-Miranda, & Bender, 1972;
Ito, Tamura, Fujita, & Tanaka, 1995; Kobatake & Tanaka, 1994; Leuschow,
Miller, & Desimone, 1994; Logothetis et al., 1995; Missal, Vogels, Li, & Or-
ban, 1999; Op de Beeck & Vogels, 2000; Richmond, Wurtz, & Sato, 1983;
Sary, Vogels, & Orban, 1993; Schwartz, Desimone, Albright, & Gross, 1983;
Tovee, Rolls, & Azzopardi, 1994). However, this approximation provides
an approach for mapping out the receptive fields of high-level neurons
that is complementary to the conventional spike-triggered approaches that
work at a given retinotopic location only. At the same time, comparison of



2388 M. Eickenberg, R. Rowekamp, M. Kouh, and T. Sharpee

Spikes

A B

“OR”

SPIKE

Figure 1: (A) Model of neural response based on one translation-invariant stim-
ulus feature. The spike probability represents a logical OR combination of re-
sponses from hidden, position-specific units that are selective for the same
stimulus feature centered at different retinotopic coordinates. (B) An example
of a discrete 3 × 3 grid approximation that can be used to model invariance
of neural responses to image translation. The shaded square denotes the spa-
tial extent of the preferred image feature; nine possible ways of centering the
preferred template within the overall stimulus are shown.

predictive power achieved by the two kinds of models—translation invari-
ant or nontranslation invariant—could also be helpful in quantifying the
emergence of invariance across the hierarchy of sensory representations.

In sum, the central goal of this work is to develop and test the computa-
tional methods that can estimate the relevant stimulus features of a neuron
under the assumption that the neural response can be triggered at different
positions within the visual field. We seek a method that:

� Works with arbitrary stimuli, including natural stimuli.
� Should in principle be capable of recovering an arbitrary complex

stimulus feature �v. That is, we do not assume that relevant stimu-
lus features can be parameterized as Gabor functions (DeAngelis,
Ohzawa, & Freeman, 1993) or curved line elements. Rather, these
shapes should emerge as a result of the analysis.

� Allows for nonlinearities in the neural responses in order to describe
such properties as rectification and saturation.

� Produces an estimate of the range and coarseness of translation
invariance.

We note that the problem of characterizing translation-invariant feature
selectivity can be thought of as complementary to the perceptual task of
representing visual scenes in the presence of uncertainties introduced by
fixational eye movements (Burak, Rokni, Meister, & Sompolinsky, 2010).
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Here, our goal is to estimate one or a few templates based on known stimuli
and inferred relevant locations for each stimulus, whereas in the perceptual
task, the goal is to infer unknown images based on known receptive fields
of neuron and the inferred eye positions.

This letter is organized as follows. In section 2, we describe an approach
for characterizing the feature selectivity of neurons whose responses exhibit
translation invariance. Section 3 presents results on both model and real
neurons (V1 complex cells). Section 4 contains concluding remarks, and
section 5 describes the methods.

2 Accounting for Translation-Invariant Neural Responses

A biologically plausible model that is consistent with the definition of trans-
lation invariance is based on the combination of the responses of position-
specific neurons according to a logical OR operation (Cadieu et al., 2007;
Fukushima, 1980; Pelli, 1985; Riesenhuber & Poggio, 1999). Mathematically,
the probability that stimulus �s will elicit a spike from a neuron selective for
a template �v at different locations within the visual field can be written as

P(spike|�s ) = 1 −
∏
�z∈G

(
1 − r̄ f (�s · T�z�v)

)
. (2.1)

Here,�z ∈ G represents a set of all possible position shifts, and T�z�v represents
a particular positioning of the feature�v at a center location described by shift
�z. The function f (�s · T�z�v) describes the normalized probability of eliciting
spikes from the presumed hidden units, whose responses are not translation
invariant but are specific to a particular positioning T�z�v of the image feature
�v; r̄ is the average response probability of a hidden unit. We refer to this
image feature �v as the template because it is the same for all hidden units.

Another biologically plausible model that yields translation invariance
is based on selecting the maximal response:

P(spike|�s ) = r̄ max
�z∈G

f (�s · T�z�v). (2.2)

The experimental support for this model was also found (e.g., in area V4;
Gawne & Martin, 2002). Although with nonbinary and probabilistic hidden
units, the MAX model will yield a different predicted firing rate compared
to the model based on the logical OR, we show that the templates of both
models can be estimated using the same two-step optimization procedure.

2.1 Review of Estimation Methods for Position-Specific Neurons.
In developing methods for characterizing invariant feature selectivity, we
build on the statistical methods developed for characterizing neural fea-
ture selectivity in the absence of invariance, which we now briefly review.



2390 M. Eickenberg, R. Rowekamp, M. Kouh, and T. Sharpee

Relevant Dimension, x

Ir
re

le
va

nt
 D

im
en

si
on

, x

P(spike|x)
P(x|spike)
P(s)

1

2

Figure 2: Statistical description of neural responses along relevant and irrele-
vant dimensions. In the framework of the position-specific model, some images
elicit spikes (black), and others do not (gray). Here, each of the images �s is rep-
resented as a point in a two-dimensional space, although it is a point in a high
d-dimensional space (each axis may correspond to the luminance of a pixel).
Because the vertical dimension (x2) does not affect the spike probability, the
probability distribution of stimuli along that dimension P(x2) is similar to the
distribution of stimuli given a spike P(x2|spike). On the other hand, the hori-
zontal dimension x1 can account for the spiking behavior because the spikes are
observed whenever the stimulus component x1 exceeds a certain value.

Bearing in mind that high-level neural responses are likely to be more
responsive to complex stimuli, such as natural stimuli, we focus on meth-
ods that are applicable in this case (Kouh & Sharpee, 2009; Paninski, 2003;
Schwartz et al., 2006; Sharpee et al., 2004; Sharpee, 2007). Without transla-
tion invariance, equations 2.1 and 2.2 simplify to the model based on just
one relevant stimulus feature �v:

P(spike|�s) = P(spike) f (x), x = �s · �v. (2.3)

The problem of finding the relevant dimension is illustrated in Figure 2.
A stimulus can be represented as a point in a high-dimensional space. A
change in the stimulus component along the relevant dimensions modu-
lates the neural response (x1-axis in the figure), while a change along an
irrelevant dimension (i.e., one that is orthogonal to the relevant dimension)
will not influence the response unless the stimulus components along the



Characterizing Translation-Invariant Neurons 2391

two dimensions are correlated. Thus, the relevant dimension can be found
by comparing distributions P(�s) and P(�s|spike) along various dimensions
and selecting the dimension along which these distributions are most dif-
ferent. The intuition for this strategy is that stimulus projections x along
an irrelevant stimulus dimension will be weakly correlated with the oc-
currence of a spike. Because the spikes will have occurred with similar or
equal probability for all values of x, the distributions P(x) and P(x|spike)

will be similar to each other along the irrelevant dimensions. In contrast,
these two probability distributions will be quite different along the relevant
dimension �v. The dissimilarity between two probability distributions can
be quantified by a number of divergence measures (Paninski, 2003; Sharpee,
2007). However, the smallest unbiased estimation error is obtained by max-
imizing the Kullback-Leibler (KL) divergence (Kouh & Sharpee, 2009):

DKL(P(x|spike)||P(x)) =
∫

dxP(x|spike) log2[P(x|spike)/P(x)]. (2.4)

In the limit of low spike probabilities, the above quantity corresponds to
the mutual information between stimulus components along the relevant
dimension and the arrival times of single spikes (Adelman, Bialek, & Olberg,
2003; Sharpee et al., 2004). The mutual information, equation 2.4, is small
when projection value x and spike times are relatively independent, because
in this case, distributions P(x) and P(x|spike) are similar. On the other hand,
when evaluated along the relevant dimensions, the KL divergence will take
its maximal value equal to the mutual information between full stimuli and
single spikes (Brenner, Strong, Koberle, Bialek, & de Ruyter van Steveninck,
2000):

Ispike =
∫

d�sP(�s)
P(spike|�s)
P(spike)

log2

[
P(spike|�s)
P(spike)

]
. (2.5)

This suggests that the relevant dimensions can be found by maximizing
the mutual information between x and the spike probability according to
equation 2.4. This approach has been implemented with a combination of
line optimization and simulated annealing (Press, Teukolsky, Vetterling, &
Flannery, 1992) to analyze the neurons from the visual system (Sharpee
et al., 2006; Sharpee, Miller, & Stryker, 2008), with subsequent extensions to
recover multiple features of both visual (Rowekamp & Sharpee, 2011; Sin-
cich, Horton, & Sharpee, 2009) and auditory (Atencio, Sharpee, & Schreiner,
2008, 2009) neurons.

2.2 Two-Step Optimization for Finding the Relevant Stimulus Dimen-
sions of Translation-Invariant Neurons. Characterizing feature selectivity
with invariance is significantly more challenging because the responses of
a translation-invariant neuron are based on stimulus features at multiple
locations within the visual field. The first step in our analysis of an invariant
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neuron is to determine the most likely location where the response could
have been triggered. The second step then uses the stimuli centered at these
locations to improve the estimate of the template as in the noninvariant case
in section 2.1. These two steps—updating the estimated locations and then
updating the estimated template—are repeated until convergence.

To perform the first step of optimization, we first consider separately
stimuli that elicited and did not elicit a spike from the invariant neuron.
For a stimulus �s that elicited a spike, one can transform the probability
P(�z|spike,�s) that the hidden unit at a location characterized by shift �z from
the center has produced a spike according to Bayes’ rule:

P(�z|spike,�s) ∝ P(�z)P(spike|�z,�s) = P(�z) f (�s · T�z�v). (2.6)

Here, P(�z) is the prior probability that the response could have been trig-
gered at a shift position �z and function f (�s · T�z�v) is the nonlinear gain
function of the hidden units, which was defined in equation 2.1. According
to equation 2.6, if the gain function f (x) is monotonic and a priori all loca-
tions are equally likely to elicit a spike, then the most likely location to have
triggered the neural response is the one that yields the greatest projection
value x between the translated template T�z�v and the stimulus �s.

For stimuli that did not elicit a spike, there is no uncertainty as to what
happened at each of the possible locations: we know that none of the hidden
units produced a spike. For these trials, we can associate any patch with
the neural response for analysis using a position-specific model. Here we
also select the patch with the greatest projection value as the one that was
most likely to trigger the response (according to the current model) but
did not. This choice corresponds to a maximal reduction in the entropy of
the current model from incorporating the measured response, and thus is
an example of maximally informative data point selection (Mackay, 1992).
To summarize, in the first step of optimization, we determine for each
stimulus the maximum projection max�z∈G �s · T�z�v across different shifts �z of
the template �v.

To perform the second step of the optimization, we form the probability
distributions Pmax

�v (x) of these maximal projection values both across all
stimuli,

Pmax
�v (x) =

∫
RD

d�sP(�s)δ
(

x − max
�z∈G

�s · T�z�v

)
, (2.7)

and across all stimuli that elicited a spike:

Pmax
�v (x|spike) =

∫
RD

d�sP(�s|spike)δ

(
x − max

�z∈G
�s · T�z�v

)
. (2.8)
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In equations 2.7 and 2.8, R
D denotes the D-dimensional stimulus space

(e.g., a set of images of D pixels). Step 2 is completed by maximizing the KL
divergence between these two probability distributions,

I(�v) =
∫

R

dxPmax
�v (x|spike) log

(
Pmax

�v (x|spike)

Pmax
�v (x)

)
, (2.9)

to obtain a new estimate of template �v.
To aid the high-dimensional optimization process of I(�v) with respect to

�v, an analytical gradient function can be calculated. It reads

∇�vI(�v) =
∫

R

dxPmax
�v (x)(〈�s|x, spike〉 − 〈�s|x〉) d

dx
Pmax

�v (x|spike)

Pmax
�v (x)

, (2.10)

where the response and projection value dependent averages 〈�s|x, spike〉
and 〈�s|x〉 are defined as

〈�s|x, spike〉 :=
∫

RD
d�sP(�s|spike)T−�zm

�sδ
(

x− max
�z∈G

�s · T�z�v

)/
Pmax

�v (x|spike),

(2.11)

〈�s|x〉 :=
∫

RD
d�sP(�s)T−�zm

�sδ
(

x − max
�z∈G

�s · T�z�v

)/
Pmax

�v (x), (2.12)

where �zm is the translation with the strongest projection responses: �zm =
argmax�z∈G�s · T�z�v. T−�zm

�s denotes the stimulus patch that yielded the largest
projection onto �v.

The proposed two-stage approach for estimating translation-invariant
templates is reminiscent of the classic EM algorithm (Dempster, Laird, &
Rubin, 1977), but differs from it in both the structure of the problem and
the approach. In particular, the variables that describe which hidden units
could have caused a spike in a translation-invariant neuron are not mu-
tually exclusive, whereas the EM algorithm for mixture models (Bishop,
2004) operates with probabilities of hidden variables that are, although not
directly observable, can take only one value at a time with some probability.
This difference is most pronounced for stimuli that did not elicit a spike, in
which case we know that inputs to none of the hidden units have exceeded
the spike threshold. Thus, we can choose any of them for the ensemble of
stimuli-response associations from which templates will be estimated. In
what follows, we use two different implementations to demonstrate that the
proposed two-step optimization converges on the correct stimulus features
when tested on a series of model neurons built according to the architecture
of equation 2.1.
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BA

Figure 3: Two approaches for characterizing translation-invariant feature se-
lectivity. (A) In the direct approach, we seek a template whose spatial extent is
smaller than the overall stimulus that covers the response region of a neuron.
The spike probability is examined by translating the candidate template to dif-
ferent locations of the translation grid (shown here for a 3 × 3 grid). (B) In the
Fourier approach, in order to account for the translation invariance, the tem-
plate is shifted to different locations of the translation grid assuming periodic
boundary conditions. Compared to the direct approach, the Fourier approach
can typically handle finer-translation grids (due to memory restrictions in the
direct approach), but it yields coarser estimates of the template because of the
need to leave larger margins when using periodic boundary conditions.

2.3 Computing Maximally Informative Invariant Dimensions: Direct
and Fourier Approaches. Two practical implementations are possible to
complete step 2: finding maximal projections between stimuli and templates
shifted to different locations. Here, one possibility is to extract stimulus
patches of smaller dimensionality d from different parts of the stimulus and
compare them to the template (see Figure 3A). The other possibility is to
work with templates and stimuli of full dimensionality D. In this case, one
needs to use periodic boundary conditions, a common assumption when
treating translation invariance (Tjan & Nandy, 2006), to compute projection
values with templates shifted to different positions (see Figure 3B).

We refer to the first approach as the direct approach and to the second as
the Fourier approach. This is to emphasize that the second approach can be
conveniently implemented by taking a two-dimensional Fourier transform
of each stimulus and the template. Multiplying the Fourier transform of the
template by ei�k·�z yields the Fourier transforms of the template after a shift
by a vector �z (here, �k enumerates the Fourier components). The implicit
assumption (the validity of which can be checked after the optimization is
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complete) is that the spatial extent of the neural template is small enough
not to be affected by moderate translations from the center of the stimulus
window (i.e., that the magnitude of the parts of template that wrap around
is close to zero). This property is more strictly enforced in the direct method,
where the size of the template by construction cannot exceed the size of the
extracted patches and needs to be specified a priori. The Fourier approach
can provide clues as to the properties of the template even if it is affected by
some of the larger translations used during the estimation. If that happens,
the configuration of the translation grid can be adjusted to a smaller range
of translations, or the sides of the stimulus frame can be zero padded to
increase the ratio between the stimulus and template sizes.

The direct and Fourier methods offer complementary capabilities in
a number of other respects, including the dimensionality of the neural
template, the size of the grid over which the responses are pooled to ap-
proximate translation invariance, and the computational requirements. For
example, the direct approach is limited by the number of patches that can be
stored in the memory of a computer. Typical capabilities of current genera-
tion computers limit analysis of translation to tens of points, so that grids of
at most 5 × 5 or 7 × 7 points can be analyzed. Reextracting patches for each
calculation avoids the memory limitations but is computationally slow. In
contrast, the Fourier approach can handle translational grids G of almost
any size and thus can better approximate continuous translation invari-
ance. On the other hand, because of periodic boundary conditions assumed
in the Fourier approach, the template has to spatially extend significantly
beyond its nonzero part. This reduces either the signal-to-noise ratio or the
resolution of templates recovered by the Fourier approach. In summary,
the direct and Fourier approaches for estimating translation-invariant tem-
plates allow one to choose between analyzing either finer-translation grids
and more coarsely grained templates using the Fourier approach or coarser
translation grids and finer-resolution templates using the direct approach.

With both approaches, the performance can be compared over differ-
ent configurations of translation grids G, as we do in section 3.3, in order
to determine the most appropriate configurations for each neuron under
consideration.

3 Results

In this section, we present results on synthetic and real neurophysiological
data. In order to validate the model in a controlled setting, we ran extensive
tests on model cells. Later, the method was applied to V1 complex cells
and put into contrast with methods that do not account for translation
invariance.

To test the algorithms for estimating translation-invariant feature selec-
tivity, we designed a series of model translation-invariant neurons accord-
ing to equation 2.1 probed with natural movies (Sharpee et al., 2006). The
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Table 1: Combinations of Parameters Used to Generate the Model Cells.

Spike Threshold Noise Number of
3 × 3 5 × 5 17 × 17 Level Repeats

2.5 3.0 4.0 0.5 1
2.75 3.25 4.25 0.75 2
3.00 3.50 4.50 1.0 3
3.25 3.75 4.75 5
3.50 4.00 5.00 10

20

Notes: The values of threshold θ and noise level σ are measured in
units of the standard deviation of the stimulus projections onto the
relevant template. Forty-five different model cells were analyzed,
each of which was analyzed for six different numbers of repeats of
the whole stimulus sequence. The stimulus length was 16,384 frames.
Given the frame size 32 × 32 and the template size of 16 × 16, the
17 × 17 translation grid corresponds to full translation-invariance
(all patches are considered). To maintain the average spike rate of the
translation-invariant model cell within a reasonable range, we had
to adjust the spike thresholds θ for hidden units depending on the
translation grid. Finally, we explored how results of the estimation
improved with an increasing number of spikes for a given model
cell by simulating several batches of responses to the same repeated
stimulus sequences (see section 3.4).

responses of the translation-invariant model cell were simulated using a
logical OR operation to pool responses of a number of afferent units. The
afferent units were all selective for the same preferred stimulus feature �v but
were centered at different positions within the visual space. The responses
of the afferent units were modeled using a noisy thresholding operation:
an afferent unit responded with a spike if the stimulus patch at the corre-
sponding position had a projection onto �v that exceeded a threshold value
of θ in the presence of gaussian noise with zero mean and variance σ 2. The
parameter σ thus can be used as a measure of neural noise. All afferent units
contributing to the translation-invariant cell had the same value of θ and σ .
In this way, the nonlinear gain function f (�s · T�z�v) in equation 2.1 becomes
a sigmoid. Because all hidden units have the same parameters except for
the centering of the relevant template, and their responses are pooled using
a logical OR, the resultant model cell approximates translation invariance
over the region of the visual space spanned by the centers of the hidden
units. We also varied the size and coarseness of the spatial translation grid
formed by the centers of stimulus patches representing the hidden units.
Table 1 describes the range of parameters tested in combination with three
types of translational grids.
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Figure 4: Feature selectivity of translation-invariant neurons cannot be charac-
terized without taking this invariance into account. (A) The relevant feature of
a model neuron with translation-invariant responses. The centers of the 3 × 3
translation grid are marked with crosses. (B) The nonlinear gain function of
the translation-invariant model cell evaluated at the location producing a max-
imal projection with the model template (θ = 2.5, σ = 1.0; stimulus repeated
20 times). (C) The estimated template without taking into account translation
invariance. (D) Comparison of the nonlinear gain functions with respect to the
estimated filter (solid line) with the nonlinear gain function with respect to the
model template at the central location of the translation grid (dashed line). Both
functions are computed without translation invariance. The observed increase
in the nonlinear gain function for negative projection values is due to the over-
lap between the templates centered at neighboring positions of the translation
grid.

3.1 Position-Specific Model Fails to Estimate Translation-Invariant
Feature Selectivity. We begin by demonstrating that translation invariance
has profound effects on the template estimation. Figure 4 presents results
of a characterization that does not take invariance into account applied to
a model cell with translation invariance. The model template (the relevant
image feature of hidden units) is shown in Figure 4A. It was taken to be
a curved Gabor in order to mimic properties of visual extrastriate neurons
(Connor, Brincat, & Pasupathy, 2007; Pasupathy & Connor, 1999, 2001, 2002).
In Figure 4A crosses mark the centers of 3 × 3 translation grid that was used
to approximate translation invariance. Because of translation invariance, the
neuron produces a spike if any of the stimulus patches taken around the
nine locations of the translation grid provides a sufficiently good match
to the template. The result is that the response region of this neuron is
much larger than the spatial extent of the template. Correspondingly, the
non-translation-invariant-optimization algorithm seeking a single relevant
feature produces a filter that is a smeared superposition of the relevant
templates placed at the centers of the translation grid (which describe the
hidden units). It is not possible to guess from this estimation even the rough
shape of the underlying template (compare Figure 4C with the template in
Figure 4A). The estimation also does not capture the correct form of the
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nonlinear gain function. The nonlinear gain function with respect to the
maximal projection value across the translation grid is a sigmoidal function
(model nonlinearity; see Figure 4B). In contrast, the estimated nonlinearity
shows similar sensitivity to both positive and negative projections onto the
estimated filter (see the solid line in Figure 4D). Furthermore, even when
the nonlinear gain function is evaluated along the correct template but at
a fixed position in the visual space, the increase in the spike probability is
still observed for negative projection values of the stimuli onto the relevant
template (see the dashed line in Figure 4D). This effect is due to the overlap
between templates centered at different positions of the translation grid,
so that negative projection values onto the template at the center positions
actually signal the presence of positive projection values onto templates
centered at neighboring positions on the translation grid. In sum, ignoring
translation invariance prevents the correct estimation of both the relevant
template and the nonlinear gain function of translation-invariant neurons.

3.2 Characterizing Feature Selectivity of Translation-Invariant Model
Neurons. We now show that both the nonlinear gain functions and the
relevant template of translation-invariant neurons can be estimated by
searching for maximally informative invariant dimensions. Figure 5 shows
estimation results of the same translation-invariant model neuron from
Figure 4A, using the direct and the Fourier methods. The estimated tem-
plates have large dot products with the model templates (the dot products
are computed between normalized vectors, so that the perfect estimation
without any noise yields 1): c = 0.897 ± 0.008 (Fourier method, Figure 5C;
error-bars represent standard errors of the mean) and c = 0.899 ± 0.011 (di-
rect method; Figure 5D). Another measure that can be used to quantify
the estimation accuracy is the ratio of information accounted for by the
estimated template to that accounted for by the model template. The latter
information quantity represents the overall information that is available
in single neural responses (Adelman et al., 2003; Sharpee et al., 2004). The
corresponding fraction of the total information explained by the estimated
filters was also close to its maximal value of 1: 0.963 ± 0.006 for the Fourier
method and 0.969 ± 0.008 for the direct method. These values were much
larger than those obtained using a position-specific template from Figure 4.
The high predictive power is also visually obvious from a comparison of the
poststimulus time histograms (PSTH) of this model neuron on a novel set
of natural scenes with predictions of PSTHs obtained using the translation-
invariant estimation model (see Figure 5G).

Finally, we point out that the algorithms typically converged quite
rapidly. In Figure 6 we show an example of convergence during template
estimation for four jackknife data sets obtained for the same model cell
as shown in Figures 4 and 5. Within 100 line optimizations in the D = 256-
dimensional template space for this model neuron, the algorithm converges
to a value that is quite close to the final outcome. Similar behavior is
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Figure 5: Estimation of translation-invariant models. (A) The relevant template
of the model neuron overlaid with the 3 × 3 translation grid (whose points are
marked by crosses). (B) Comparison between the nonlinear gain function of the
model cell (solid line) and the translation-invariant estimation (dashed line). In
contrast to the case of estimation without translation invariance (see Figure 4),
this estimation does reproduce the correct, sigmoidal form of the nonlinear
gain function. (C) The Fourier method estimation using the 3 × 3 translation
grid (same grid as in the model) yields a dot product of c = 0.897 ± 0.008 and
a fraction of information explained Iexpl = 0.963 ± 0.006 (1 is the maximum).
(D) Analogous estimation using the direct method yielded c = 0.899 ± 0.011 and
Iexpl = 0.969 ± 0.008. Assuming a mismatched 5 × 5 translation grid (compared
to the model) still leads to reasonable estimation results using either the Fourier
method (E), c = 0.790 ± 0.004 and Iexpl = 0.826 ± 0.002, or the direct method (F),
c = 0.78 ± 0.02, Iexpl = 0.826 ± 0.003. (G) Comparison of model spike probability
(black line, gray area shows standard errors of the mean) and the predicted spike
probability (blue) using the template and model from panel D. Predictions were
made for a novel set of frames not used in estimating the model.
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Figure 6: Example of algorithm convergence. (A) Convergence in terms of in-
formation explained on the test data set by the candidate template. (B) Conver-
gence in terms of projection of the candidate template onto the model template.
In both panels, the four lines correspond to four different jackknife analyses of
the same model neuron. In the case of information, different final values are
due to differences in the overall information per spike in a particular test data
set. According to both parameters the algorithm converges in all cases within
100 iterations, less than d = 256 of the template space. Insets in (B) show the
estimated templates after 1, 5, 10, and 15 line optimizations.

observed in terms of both information explained on a novel data set (see
Figure 6A) and projection onto a model template (see Figure 6B). In sum-
mary, the estimation of translation-invariant templates appears to be quite
robust and achievable within a number of iterations that is smaller than the
template dimensionality.

The configuration of the translation grid represents another impor-
tant parameter of the estimation algorithm. In the above calculation, the
translation grid used during estimation coincided with that of the model
translation-invariant neuron. We find, however, that even when the trans-
lation grids used during estimation differed from those of the model cell,
reasonably accurate estimations can be obtained. For example, Figures 5E
and 5F show the results of the estimation using a 5 × 5 translation grid for
the Fourier and the direct method. Although this translation grid is substan-
tially different from the 3 × 3 translation grid that was used in the model,
the estimated templates are visually quite similar to the model one and have
dot products of 0.789 ± 0.003 and 0.78 ± 0.02 for the Fourier (see Figure 5E)
and direct (see Figure 5F) methods. The corresponding values of the fraction
of total information explained by estimated filters (that takes into account
that estimated templates can be translated versions of the model template)
are 0.826 ± 0.003 and 0.826 ± 0.002 for the direct and Fourier methods,
respectively. Thus, the estimation of the preferred image feature appears to
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be robust in the presence of disparities between the translation grid of the
neuron and that used during the estimation. At the same time, the predic-
tive power of the recovered model was somewhat lower in the presence
of a mismatch between the translation grid of the model and estimation.
We next explore whether this observation can be used to characterize the
coarseness in the translation invariance of a neuron.

3.3 Resolving the Coarseness of Translation Invariance. In addition to
determining the relevant stimulus feature for a translation-invariant neu-
ron, it is also helpful to determine the range and perhaps the coarseness that
characterizes its translation invariance. The spatial extent can be measured
directly by observing how the neural response to the preferred stimulus
feature decreases with distance from the receptive field center, and indeed
detailed measurements have shown that responses of high-level visual neu-
rons decrease with distance from the receptive field center (Desimone &
Schein, 1987; Pasupathy & Connor, 2001; Pollen, Przybyszewski, Rubin, &
Foote, 2002; Rust & DiCarlo, 2010). However, one would also expect to find
discrete aspects in the neural implementation of translation invariance, as
can already be observed in the retina (Field et al., 2010; Liu, Stevens, &
Sharpee, 2009; Soo, Schwartz, Sadeghi, & Berry, 2011; Soodak, Shapley, &
Kaplan, 1991). Not knowing this coarseness a priori, one would like to have
a method to find it. Above, we have shown that the relevant stimulus fea-
ture or template can be estimated quite closely, even in the presence of a
mismatch between the true translation grid and the grid used during the
estimation. However, the disparity between the model and the assumed
translation grids during estimation resulted in the reductions of both the
dot product coefficient and the percentage information explained by the
estimated filter. Here, we examined whether this decrease is sufficient to
determine the underlying translation-invariance properties of a neuron,
such as its coarseness.

Figure 7 shows how the percentage information explained changes as
a function of mismatch in coarseness between the model and estimation
translation grids. For example, in Figure 7A, we analyze the model cell
with a 3 × 3 translation grid using translation grids ranging from no trans-
lation invariance (1 × 1 grid) to near-perfect translation invariance (9 × 9
grid corresponds to translation by two pixels). We find a clear peak when
the estimation grid matches that of the model in terms of the percentage in-
formation explained (see Figure 7B). The difference of the peak value from
the neighboring points is significant (p < 10−4, t-test; see Figure 7A). Thus,
the algorithm can correctly identify the coarseness of translation invariance
of this model cell. Analyzing results for models with a finer 5 × 5 transla-
tion grid (see Figure 7B), we find that it is possible to rule out a coarser
grid of 3 × 3 compared to the true grid (p < 10−4), but that a finer 9 × 9
grid gives the same predictive power as the model grid (p = 0.16). When
the analysis is taken to the limit of perfect translation invariance (17 × 17



2402 M. Eickenberg, R. Rowekamp, M. Kouh, and T. Sharpee

model translation 5 x 5 grid model translation 17 x 17 grid

1x1 3x3 5x5 9x90

50

100

%
 in

fo
rm

at
io

n 
ex

pl
ai

ne
d

model translation 3 x 3 grid

BA C

estimation gridestimation gridestimation grid
1x1 3x3 5x5 9x90

50

100

1x1 3x3 5x5 9x9
0

50

100

Figure 7: Recovering the coarseness of translation invariance. The percentage
of information explained is plotted as a function of the translation grid size
assumed during estimation. (A) Model cells with a 3 × 3 translation grid, σ =
1.0, θ = 2.5, 2.75, 3.0 analyzed from 20 repeats of the whole stimulus sequence
(16, 384 frames). The best predictive power is obtained when the same grid
is used during estimation. Significant t-tests are obtained for the difference
between the peak value and the value for 1 × 1 grid and 5 × 5 grid (p < 10−4,
t-test). (B) Model cells with 5 × 5 translation grid and θ = 3.0, 3.25, 3.75 (other
parameters are the same as in panel A). The use of coarser translation grids
results in significantly worse performance (p < 10−4); however, finer translation
grid results in the same performance (p = 0.16). (C) Model cells with 17 ×
17 translation grid, θ = 4.0, 4.25, 4.50. This is the case of perfect translation
invariance with grid spacing of 1 pixel. We find that the performance of the
estimation algorithm continues to improve from 5 × 5 to 9 × 9 grids (p < 10−4).
In all cases, therefore, the algorithm could disambiguate coarser translation
grids from the true ones.

grid in our case), we continue to observe an increase in predictive power
when the translation grid is refined from 5 × 5 to 9 × 9 (p < 10−4). Overall,
these results suggest that it is possible to determine a lower limit for the
coarseness of the translation grid. For cells with a rather coarse translation
grid, such as when the smallest translation is about one-fourth of the overall
response region (corresponding to 3 × 3 grid in our simulations), both the
upper and lower limits on the coarseness of the translation grid may be
determined.

3.4 Convergence with Increasing Data Set Size. An important prac-
tical consideration is how the proposed methods perform not only in a
well-sampled regime where the number of trials (and spikes) greatly ex-
ceeds the stimulus dimensionality but also in much more typical cases
where the two numbers are comparable. Therefore, we have analyzed es-
timated templates as a function of data set size for model cells that had
different intrinsic noise levels. Each of these model cells was probed by
the same stimulus sequence that was repeated a different number of times,
from 1 to 20 times. Simulations were done using the Fourier approach,
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Figure 8: Projection between estimated and model dimensions as a function of
the number of spikes Nspikes. The improvement in performance with an increas-
ing number of spikes is shown for 12 model cells. All of the model cells had the
same relevant template as in Figure 5A and translation grid 3 × 3, but different
noise levels and thresholds θ = 2.5 (A), θ = 2.75 (B), θ = 3.0 (C), and θ = 3.5 (D).
Within each panel, model cells have σ = 0.5 (light gray, ◦), 0.75 (dark gray, 	),
and 1.0 (black, �). The solid and dashed lines represent results of quadratic and
linear regressions. Stimulus dimensionality D = 1024, corresponding to frames
with 32 × 32 pixels. Results were obtained using the Fourier approach. Good
performance is obtained for all models cells even in the severely undersampled
regime with D > Nspikes. As expected, the improvements with increasing the
number of spikes are more pronounced for neurons with larger noise levels.

because it permits larger stimulus dimensionality D (32 × 32 frames yield
D = 1024). Figure 8 describes results for model cells with different thresh-
olds, translation grids, and different noise levels. As expected, we found that
the dot product between the estimated and the model template improved
with increasing number of spikes. Furthermore, the improvement was more
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pronounced for cells with greater levels of intrinsic noise. Typically a steeper
slope was observed for noisier cells (black, σ = 1.0) than the less noisy cells
(light gray, σ = 0.5), since the reduction in uncertainty is more significant
for each added repetition in the noisier cell. However, estimations with dot
products greater than 0.85 were obtained in all cases. These results demon-
strate the feasibility of estimating feature selectivity of translation-invariant
neurons for data sets containing a few thousand spikes, which is achievable
with current physiological techniques.

3.5 Analysis of V1 Complex Cells’ Responses to Natural Movies. We
now use the two-step optimization to characterize the feature selectivity of
V1 complex cells. The responses of V1 neurons are sensitive to the presence
of multiple stimulus features (Chen et al., 2007; Rust et al., 2005; Touryan
et al., 2002). The complex cells are thought to implement one of the first
steps in building position-invariant representations, and their responses
are consistent with being triggered by spatially shifted image patterns (Rust
et al., 2005). Thus, we set out to explore whether the translation-invariant
models can provide a better description of their responses than the position-
specific models with up to three features.

For each neuron, we estimated both position-invariant models and
position-specific models based on its responses to natural movies (see
the appendix). The templates of translation-invariant models and position-
specific models now also included a temporal dimension comprising three
time lags. The templates were not assumed to be separable in space and
time. For both position-specific and position-invariant models, we have
allowed for the possibility that the spike probability can depend on the
conjunction of features. In the framework of a translation-invariant model,
this assumes that the output of hidden units depends on several templates,
such as �v1, �v2, �v3, that are evaluated at a given position. We model the
position-invariant response as

P(spike|�s) = r̄ f (�s · T�zmax
�v1,�s · T�zmax

�v2,�s · T�zmax
�v3), (3.1)

where �zmax is the grid location at which x1 = �s · T�z�v1 is maximized for a
particular stimulus �s. Template �v1 was found first for a one-dimensional
model, and the projections on �v1 determined which grid location we asso-
ciated with the neural response. Additional templates �v2 and �v3 are found
subsequently to create a two- and three-dimensional model, respectively,
with the projections on the stimulus at the location selected by �v1 modulat-
ing the neuron’s response. The templates found using model 3.1 will also be
valid for a logical OR model in cases where the maximum of the nonlinear
gain function f (x1, x2, x3) of hidden units occurs along the first dimen-
sion. This is the case for classical models of contrast gain control where the
response of a hidden unit is a function of one (most relevant) stimulus
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component normalized by signal components along other dimensions
(Heeger, 1992; Schwartz et al., 2002; Schwartz & Simoncelli, 2001).

In choosing the configuration of the translational grid, we were guided by
previous results that V1 neurons have ∼10 (≤18) subunits per neuron whose
center positions are closely spaced (Rust et al., 2005). The position-invariant
models were computed using a 3 × 3 grid with a spacing of 1 pixel, similar
to Rust et al. (2005). This translation grid would yield 9 subunits in the
case of one translated template and 27 subunits for models based on three
translated features, which is on the order of the range of experimentally
observed numbers of subunits.

Across our population of 53 V1 complex cells, we find that both position-
specific and position-invariant models could account for a larger amount
of information in the neural response when more templates were included
(see Figure 9; see the appendix for details of information calculation). How-
ever, an interesting transition was observed with increasing the number of
features. The translation-invariant models with one relevant template ac-
counted for significantly (p < 10−5, Wilcoxon signed-rank test) more infor-
mation in the neural responses than position-specific models with one rel-
evant feature. The same comparison was true for models with two features
(p = 0.0005, Wilcoxon signed-rank test; see Figure 9B). With three relevant
templates, the position-specific models performed as well, across the popu-
lation, as translation-invariant models (p = 0.06, Wilcoxon signed-rank test,
panel C). Thus, position-invariant and position-specific models offer com-
plementary paths to approximate the neural computations observed across
the population of V1 complex cells. At the same time, there were individual
neurons whose responses could be predicted substantially better by either
the position-invariant or the position-specific models. In Figure 10, we show
the estimation of the two kinds of models for a V1 complex cell that was
better described with a position-invariant three-template model than with
a position-specific model. Figure 11 shows estimation results for a complex
cell that was better described by a position-specific three-template model
than by a position-invariant model. Tables 2 and 3 show the performance of
one-, two-, and three-dimensional position-invariant and position-specific
models according to a number of measures of predictive power, including
the correlation coefficients of predicted firing rate with the average firing
rate for example cells shown in Figures 10 and 11, respectively. Compari-
son between these two examples suggests that relevant stimulus features
estimated with a better-performing model have higher signal-to-noise ratio
(represented in the color map) and are also more localized in space. For
the example neuron in Figure 10 that was better described with an invari-
ant model, the relevant stimulus features of the position-specific model are
more spatially distributed than those of the position-invariant model. Sim-
ilarly, for the example neuron in Figure 11 that was better described with
a position-specific model, the relevant stimulus features of the invariant
models are more blurred. When a position-invariant model is fitted to a
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Figure 9: Population analysis of predictive power of position-specific and
position-invariant models for V1 complex cells. Fraction of information ex-
plained by models with one (A), two (B), and three (C) features. Correlation co-
efficients between measured and predicted firing rates are compared for models
with one (D), two (E), and three (F) translation-invariant features with correla-
tion coefficients obtained with the three-feature position-specific model. Models
with the same number of features can be compared according percentage in-
formation values (A–C), whereas models with different number of features can
be compared according to correlation coefficients (D–F). Across the population,
position-invariant models with one or two features outperformed their position-
specific counterparts. Furthermore, significant improvements were observed for
some of the neurons considered individually (the points marked with empty
circles, P < 0.05 t-test), where even the models with single translation-invariant
template outperformed the models with three position-specific features (D).

position-specific unit, each of the model locations could fit the unit with a
translated template. Since they use the same template, the model template
becomes the average of the translated templates, which is a blurred version
of the position-specific template. Likewise, when a position-specific model
is fitted to a position-invariant unit, the model could fit each of the loca-
tions with a translated template, which results in a blurred template. Thus,
the mismatch between the structure of the underlying neural computation
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Figure 10: Example V1 complex cell that was better described with a position-
invariant model. (A) Three relevant spatiotemporal features for a position-
specific LN model are shown. Each feature is shown in a separate row and
represents a spatiotemporal profile covering three time lags from −132 to −33
msec before the spike arrival time. Results are shown as averages over four
jackknife estimates of each feature. The color scale denotes signal-to-noise ratio
relative to the variance across the jackknife estimates, which was corrected for
overlapping data in the jackknife estimates (Efron & Tibshirani, 1998). (B) Three
relevant spatiotemporal templates of a position-invariant LN model; notations
are as in panel A. Firing rate predictions were made using these models for a
novel, repeated data set. Predictions using the position-specific models (C) and
position-invariant models (D) are shown using red, blue, and green lines for
models based on one, two, and three features, respectively. The measured firing
rate (black line) is shown together with its standard error of the mean (gray
shading), neuron 883-2.

and the estimation model is likely to result in the blurring of the relevant
stimulus features, as also shown with a model neuron in Figure 4C.

In addition to comparing position-specific and position-invariant models
with the same number of features, one can ask whether models with a sin-
gle translation-invariant template can outperform position-specific models
with multiple features. To carry out this comparison, we recall that mod-
els with a smaller number of dimensions are at an inherent disadvantage
because adding even a random dimension to the model will almost surely
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Figure 11: Example V1 complex cell that was better described with a position-
specific model. Notations are as in Figure 10, neuron 772-2.

Table 2: Measures of Predictive Power of Position-Specific and Position-
Invariant Models for an Example Neuron from Figure 10 Best Described by
a Position-Invariant Model.

Information Maximum Variance Correlation
Fraction Fraction Coefficients

Position specific 1D 0.159 ± 0.003 0.121 ± 0.011 0.367 ± 0.002
2D 0.336 ± 0.005 0.31 ± 0.02 0.477 ± 0.003
3D 0.525 ± 0.008 0.72 ± 0.04 0.468 ± 0.002

Position invariant 1D 0.287 ± 0.005 0.197 ± 0.009 0.511 ± 0.003
2D 0.453 ± 0.007 0.42 ± 0.02 0.476 ± 0.003
3D 0.614 ± 0.011 0.81 ± 0.04 0.614 ± 0.002

Notes: Models with one, two, and three features are denoted as 1D, 2D, and 3D, respec-
tively. The means and standard deviations are reported.

improve information explained (Fairhall et al., 2006). This is because infor-
mation characterizes predictive power of a given set of features up to any
one-to-one transformation of the nonlinearity (the nonlinear gain function
is recomputed for a given data set). The information gain from adding
a random dimension is not artifactual per se, because random dimen-
sions will always have a small component along relevant dimensions. With
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Table 3: Measures of Predictive Power of Position-Specific and Position-
Invariant Models for an Example Neuron from Figure 11 Best Described by
a Position-Specific Model.

Information Maximum Variance Correlation
Fraction Fraction Coefficients

Position specific 1D 0.190 ± 0.006 0.114 ± 0.009 0.329 ± 0.002
2D 0.350 ± 0.007 0.39 ± 0.03 0.423 ± 0.003
3D 0.532 ± 0.013 0.79 ± 0.05 0.453 ± 0.002

Position invariant 1D 0.211 ± 0.006 0.094 ± 0.006 0.445 ± 0.004
2D 0.337 ± 0.008 0.204 ± 0.012 0.507 ± 0.003
3D 0.518 ± 0.010 0.47 ± 0.03 0.240 ± 0.004

natural stimuli, this can lead to appreciable information gain (Sharpee et
al., 2004), making it difficult to compare models with different numbers
of features. Therefore, to compare models with different numbers of fea-
tures, we used a correlation coefficient between the predicted and measured
firing rates on a test set, under conditions where both the features and
the nonlinear gain function were computed from the training data set (see
the appendix). Unlike the information, this quantity should decrease if more
features are added to the model than necessary to explain the responses.
Here we find that majority of V1 complex cells (37/53) are better de-
scribed by a translation-invariant model based on just one feature than
by a position-specific model with three features (see Figure 9D, signed-
rank test across the population yielded p = 0.0001). Furthermore, across
the population, the mean correlation coefficient decreased with the addition
of extra features to the translation-invariant model (p = 0.01 was obtained
from signed-rank test for population comparisons both between one-feature
versus two-feature translation-invariant models and between two-feature
versus three-feature translation-invariant models). Figures 9E and 9F show
comparisons between two- and three-feature translation-invariant mod-
els compared with the three-feature position-specific model. In sum, the
fact that position-invariant models yield improved predictive power over
position-specific models serves as proof-of-principle that the proposed two-
step optimization can provide a useful characterization of neural responses.

4 Summary

This letter considered the problem of finding relevant image features in the
situation where they can appear anywhere within the visual field to trig-
ger the neural responses. We focused on estimating these relevant image
features from neural responses to natural stimuli because neurons in the cor-
responding high-level visual areas typically respond poorly to randomized
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images, such as white noise, and require the presence of structured image
features to produce robust responses.

Our method characterizes translation-invariant feature selectivity using
an iterative two-step optimization. The first step is obtaining estimates of
locations associated with the neural response based on the initial estimate
of the relevant image feature. The second step is updating the optimal im-
age feature given an estimate of the location within each image responsible
for triggering the neural response. We found that such a two-step opti-
mization can produce reliable estimates of both the relevant image features
and the nonlinear transformation describing how the stimulus similarity
to the relevant image feature increases the neural spike rate (see Figure 5).
Furthermore, the algorithm can provide estimates of the coarseness of the
translation grid that are most consistent with the data. In most cases, the ap-
propriate coarseness of the translation grid can be determined as the coars-
est that is consistent with the data. This is because considering finer than
necessary translation grids did not typically lead to a decrease in predic-
tive power compared to the model translation grid (see Figure 7B). These
results mirror those reported with psychophysical data by Tjan and Nandy
(2006), where the lower bound on the spatial range of stimulus uncertainty
could be determined much more precisely than the upper bound. At the
same time, we find that for cells with a coarse translation grid, both finer
and coarser translation grids could be distinguished from the one used
in the model based on the decrease in the resulting predictive power (see
Figure 7A).

From a practical standpoint, we considered two approaches, direct and
Fourier, for characterizing translation-invariant feature selectivity. For large
data set sizes and available computational resources, both the direct and
Fourier approaches will yield converging estimates of the relevant image
features. However, the two approaches are complementary in terms of their
trade-offs between the sizes of the translation grid and the relevant image
features that they can handle. The Fourier approach can typically handle
finer translation grids but will yield coarser (or less reliable) estimates of
the relevant image template than the direct approach. At the same time, the
convergence result of the Fourier approach (see Figure 8) is encouraging,
as the projection between the model and estimated relevant image features
was greater than 0.85 (for the perfect estimation, the projection value would
be precisely 1), even in the regime of undersampled data sets where the
number of spikes was fewer than the stimulus dimensionality.

Using the new algorithm to characterize responses of V1 complex cells
to natural stimuli, we found that across the population, neural responses
were equally well described by both the translation-invariant model and
the position-specific model with three features. This suggests that the two
models provide complementary approaches for characterizing responses
of V1 neurons. At the same time, Mechler and Ringach (2002) noted that
the standard (and so far the only available) measure for classifying simple
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and complex cells in V1 based on responses to moving gratings might not
be appropriate. This leaves open the possibility that the set of complex cells
we analyzed might actually comprise cells that perform different types of
computations. We found that some neurons in our population were sub-
stantially better described by a position-invariant model with three tem-
plates than by a position-specific model (see Figure 9C). At the same time,
there were other neurons for which position-specific models worked signifi-
cantly better. Furthermore, using correlation coefficients between measured
and predicted firing rates on a novel data set, we find that even mod-
els with a single translation-invariant feature can yield better predictive
power than models with three position-specific features (see Figure 9D). In
sum, translation-invariant models represent an alternative and complemen-
tary way of characterizing responses of V1 neurons compared to existing
methods.

The described approaches can be extended to other types of invariance,
such as scaling. This can be done with the current algorithm by augmenting
stimuli with those from different scales and expanding the grid of possible
translations to include points corresponding to stimuli of different scales.
Finally, although we have focused on characterizing responses of visual
neurons that show tolerance to translation of the preferred image feature,
the described methods are statistical in nature and can be used for analyzing
responses of neurons in other sensory modalities that show invariance
to appropriate transformations, such as pitch and tempo for high-level
auditory neurons.

Appendix: Methods

A.1 Analysis of V1 Responses. The responses of V1 complex cells were
recorded while the animal was presented with natural movies and were
collected as part of a previous study (Sharpee et al., 2006). The data set for
each neuron consisted of three sets of responses: responses to a relatively
long sequence (∼10 min) of different natural scenes (unrepeated data set),
responses to a shorter stimulus sequence (∼10 sec) repeated 55 times (re-
peated data set), and responses to moving gratings of optimal orientation
and spatial frequency. In some neurons, the responses to multiple blocks of
these kinds of stimuli were also available. Neurons were selected as com-
plex if the modulation of their responses to moving gratings at the stimulus
frequency F1 was less than the mean elicited firing rate F0 (Skottun et al.,
1991). Natural movies were presented at 30 Hz; both stimuli and spike
trains were binned into 33 msec time bins. Multiple occurrences of spikes
in a bin were added (responses were not binarized).

A.2 Finding Relevant Stimulus Features. For position-specific LN
models, the relevant stimulus features were computed as dimensions in
the stimulus space that accounted for the maximal amount of information
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in the neural response (Sharpee et al., 2004). The first maximally informative
dimension (MID) was found by maximizing the KL divergence in equation
2.4 between the probability distribution

P�v(x) =
∫

RD
d�sP(�s)δ

(
x −�s · �v)

(A.1)

and

P�v(x|spike) =
∫

RD
d�sP(�s|spike)δ

(
x −�s · �v)

. (A.2)

When computing the spike-conditional probability distribution P�v(x|spike),
we included projections from a given stimulus as many times as the number
of spikes elicited by this frame. The resulting histogram was normalized to
sum to 1 by dividing by the number of spikes. This procedure is consistent
with a Poisson assumption of independent spikes (Sharpee, 2007).

The optimization algorithm (Sharpee et al., 2004, 2006) consisted of a
series of 1D line optimizations along the gradient of information. During
each line optimization, points that led to decreases of information were oc-
casionally accepted with probability exp(−�I/T ), where �I is the decrease
in information associated with acceptance of the new estimates of relevant
dimensions, and parameter T (effective temperature) controls the probabil-
ity of accepting decreases in information of large magnitude. Dimensions
that led to an increase in information were always accepted. The optimiza-
tion procedure started with the value of effective temperature T = 1. The
effective temperature decreased by a factor of 0.95 after each line maximiza-
tion until it reached a value of 10−5. After that, the temperature increased
by a factor of 100 and the iteration continued. The maximum number of
line maximizations was 1000. Performance of the current dimension was
evaluated on the test set after every line maximization. Dimensions with
the best performance on the test set were used as the MIDs. The search for
the first MID was initialized as the spike-triggered average.

After the first MID was computed, we initialized the second dimension
as a random segment of the stimulus, and optimized a pair of dimensions
to capture the maximal amount of information about the arrival times of
the single spikes in this case. The corresponding optimization function is
given by

I(�v1,�v2) =
∫

dx1

∫
dx2P�v1,�v2

(x1, x2|spike) log2

P�v1,�v2
(x1, x2|spike)

P�v1,�v2
(x1, x2)

,

(A.3)
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where x1 and x2 represent stimulus components along dimensions �v1
and �v2, respectively. The probability P�v1,�v2

(x1, x2) represents the probabil-
ity distribution of stimulus components along dimension �v1 and �v2, and
P�v1,�v2

(x1, x2|spike) is the analogous probability distribution computed by
taking only stimulus segments that lead to a spike. Dimensions �v1 and
�v2 that at the end maximize equation A.3 correspond to MID1 and MID2.
Following optimization of the second dimension, the third dimension was
added to the model and optimized using the three-dimensional probability
distributions P�v1,�v2,�v3

(x1, x2, x3) and P�v1,�v2,�v3
(x1, x2, x3|spike).

For position-invariant models, the first dimension was estimated by max-
imizing the KL divergence in equation 2.9 between probability distribution
Pmax

�v (x) and Pmax
�v (x|spike) computed according to equations 2.7 and 2.8 with

respect to maximal projections across patches of each image. The optimiza-
tion used the same algorithm as described above for the position-specific
case, with the only modification that patch locations yielding maximal pro-
jections onto the current estimate of the template were updated after each
line optimization. Using locations that provided the greatest match to the
first template �v1, we then analyzed the stimulus-response pairs to estimate
the additional templates.

The estimates of relevant templates for each type of a model (with or
without position invariance) were obtained from the unrepeated data set.
In each case, we obtained four jackknife estimates by leaving out a different
consecutive one-fourth of the unrepeated data set as a validation data set
and using the remaining three-fourths of the unrepeated data set as a train-
ing data set. The results of optimization that gave the best performance
on the validation data set were then averaged across the four jackknife
estimates to produce the estimated templates.

A.3 Quantifying Predictive Power of Models.

A.3.1 Information Explained. To evaluate and compare the performance
of different kinds of models, we then used a separate repeated data set (see
above) to compute the mutual information accounted for by a given type of
model. The mutual information was computed in the same way as during
the optimization process (see section A.2), but using the repeated data set
instead of the unrepeated data set that was used to find the relevant features.
The advantage of using information as a measure of predictive power is that
it characterizes how well a given set of features can account for spike times
with a flexible nonlinear gain function. We note that the information values
are, however, dependent on the number of bins. Here, we used seven bins to
discretize probability distributions along each of the relevant dimensions.
The dependence on the number of bins is typically largely independent of
the features themselves, so that models evaluated using the same number
of bins can be directly compared to each other. However, this dependence
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on binning makes it difficult to compare models with different numbers of
relevant features.

A.3.2 Information per Spike. The values for the single-spike information
captured by different types of models were then compared to the overall
information carried by the arrival times of single spikes, Ispike. Information
Ispike about the stimulus carried by the arrival times of single spikes can
then be computed using the average firing rate r(t) as (Brenner et al., 2000)

Ispike = 1
T

∫
dt

r(t)
r̄

log2
r(t)

r̄
, (A.4)

where r̄ is the average stimulus-evoked firing rate. This equation corre-
sponds to equation 2.5 following the substitution of averaging over time
with averaging over the stimulus probability distribution. This information
measure makes no assumptions about the number of relevant stimulus
dimensions or about the shape of the nonlinear gain function describ-
ing the dependence of spike probability on the relevant stimulus compo-
nents. Therefore, it can be used to quantify the performance of any model
of a reduced dimensionality, such as models with and without position
invariance.

Both the overall amount of information and the information accounted
for by different estimated models contain a positive bias, which decreases as
more data are collected (Brenner et al., 2000; Strong, Koberle, de Ruyter van
Steveninck, & Bialek, 1998; Treves & Panzeri, 1995). To correct for this bias,
we computed information values based on different fractions of the repeats
(80–100%), and then used linear extrapolation to find values predicted for
infinite number of repetitions. This procedure was used to correct for bias in
all information values (Ispike and information along one or more dimensions
�v). The amount of correction varied between 3% and 15% depending on the
neuron and type of model.

A.3.3 Maximal Explained Variance. Similar to information, one can also
compute the maximal amount of variance that a given set of features can
account for the observed responses with a flexible nonlinear gain function
(Sharpee, 2007), comparing this to the overall variance in the firing rate.
The latter quantity is given by

Fspike = 1
T

∫
dt

(
r(t)

r̄

)2

− 1. (A.5)

It provides the maximal bound on the amount of variance that can be
accounted for by any model. The variance accounted for by a model
with multiple dimensions �v1, �v2, �v3 can be computed using the following
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equation (Sharpee, 2007):

F(�v1,�v2,�v3) =
∫

dx1

∫
dx2

∫
dx3

[P�v1,�v2,�v3
(x1, x2, x3|spike)]2

P�v1,�v2,�v3
(x1, x2, x3)

− 1.

(A.6)

Similar to the information per spike and information explained, the values
for the variance in the firing rate, equation A.5, and variance accounted
for by the model, equation A.6, contain a positive bias (Machens, Wehr, &
Zador, 2004; Sahani & Linden, 2003). To correct for this bias, we used the
same procedures as described above in the case of information values. To
refer to this quantity as “maximal explained variance” emphasizes that it is
based on an unconstrained nonlinear gain function.

A.3.4 Correlation Coefficients. To characterize the predictive power of
both the estimated features and nonlinear gain functions, we also com-
puted correlation coefficients between predicted and measured firing rates.
Here, we use both the filter and the nonlinear gain functions derived from
the unrepeated data to predict the neuron’s firing rate for the repeated
stimulus data set. The nonlinear gain function was estimated in a binless
manner using gaussian kernel density,

f (�x) =
∑

j r je
−(�x j−�x)2/(2ν2 )

∑
j e−(�x j−�x)2/(2ν2 )

,

where �x describes projections along the relevant dimensions measured in
their standard deviations, index j enumerates stimuli in the training data
set, and rj is the measured spike rate for training stimulus j with pro-
jections onto relevant dimensions �x j. The width ν of the gaussian ker-
nel was 0.1. We note that correlation coefficients are also linearly related
to percentage explained variance by the full model (features and non-
linear gain function estimated from the training data set and applied to
test data set) up to the rescaling in the mean evoked firing rate. The
mean evoked firing rate could be different between the training and test
data sets, and previous studies have sought to compensate for this ef-
fect when evaluating the predictive power (Fairhall et al., 2006). Correla-
tion coefficients were also extrapolated to infinite data set limit using the
same procedure as described above for information and maximal variance
explained.
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