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Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either
achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We
recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to
examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus
features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transfor-
mation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input
spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons
require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated
nonlinearities, could account for �85% of the total information available in the spike trains and the preserved information transmission.
These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the
temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.

Introduction
To completely characterize the signal transformation performed
by an individual neuron, all of its inputs and its output spike train
need to be recorded simultaneously. Because the number of cells
providing input to any one neuron is quite high in most neural
systems, the opportunities for making such recordings are rare,
particularly in vertebrates. We capitalized on the fact that the
receptive field center of many relay neurons in the lateral genic-
ulate nucleus (LGN) of the primate thalamus receive their pri-
mary input from one ganglion cell in the retina (Cleland et al.,
1971; Kaplan and Shapley, 1984; Sincich et al., 2007). The syn-
apses formed by each ganglion cell axon are large, numerous, and
occupy the proximal dendrites of LGN neurons (Conley and Fitz-
patrick, 1989; Wilson, 1989). This anatomical arrangement al-
lows the EPSPs generated by each ganglion cell spike to be re-
corded with an extracellular electrode (Hubel and Wiesel, 1961;
Bishop et al., 1962; Kaplan and Shapley, 1984). Thus, in principle,
it is possible to recreate the spike trains occurring on both sides of
the synapse from such recordings.

The macaque visual system offers several experimental advan-

tages for examining the signal transformation of inputs to out-
puts. The receptive field centers of primate ganglion cells and
LGN neurons dominate the responses to visual stimuli, and they
have essentially no spatial structure (Reid and Shapley, 1992,
2002; Croner and Kaplan, 1995; Chichilnisky and Kalmar, 2002).
These neurons also exhibit a range of temporal dynamics that
may be stimulus dependent (Smirnakis et al., 1997; Usrey et al.,
1999; Chander and Chichilnisky, 2001; Solomon et al., 2004).
Therefore, to understand the simplest case of neuron-to-neuron
signal transformation, we focused on how the representation of a
flickering spot of light covering the field center is altered between
a ganglion cell and its target LGN neuron. To approximate the
spectrum of temporal frequencies that are encountered in natural
environments, we constructed a noise stimulus to mimic both the
non-Gaussian distribution and the second-order correlations of
luminance values observed during natural viewing (Dong and
Atick, 1995; Dan et al., 1996; van Hateren, 1997; Simoncelli and
Olshausen, 2001; Ringach et al., 2002). We found that LGN spikes
represented such stimuli differently than the input ganglion cell
spikes, and did so with increased information efficiency in each
spike, sometimes to the extent that lossless information transmis-
sion was achieved.

Materials and Methods
Physiology and EPSP identification. Experiments were conducted in 6
adult macaques using procedures approved by the UCSF Institutional
Animal Care and Use Committee, and in accordance with National In-
stitutes of Health guidelines. Animals were prepared for physiological
recordings as described previously (Sincich et al., 2007), and the record-
ings reported here are the subset (n � 9) of the 37 cells with retinal EPSPs
in that study which had sufficient data for the extended analysis detailed
below. All cells appeared to fire in “tonic” mode, because �4% of the
spikes could be classified as “burst” by spike-interval criteria; however,
even these spikes had associated EPSPs (see Sincich et al., 2007 for sup-
porting evidence). Extracellular potentials recorded by tungsten micro-
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electrodes were amplified 1000�, analog filtered between 0.3 and 3 kHz,
and acquired digitally at 25 kHz (Power 1401, Cambridge Electronic
Design).

Isolated EPSPs (those that failed to cause an LGN spike) were identi-
fied by routine waveform sorting. EPSPs which generated LGN spikes
required additional analysis to identify because their waveforms were
partially merged with the spike waveforms. A subtraction technique was
used to extract these “successful” EPSPs (Sincich et al., 2007). Each cell’s
EPSPs exhibited an absolute refractory period, which is strong evidence
that the EPSPs were driven by one retinal ganglion cell. EPSPs from
subtracted waveforms had shape components identical to the isolated
EPSPs for a given cell, indicating that the successfully transmitted EPSPs
originated from the same ganglion cell as the EPSPs that failed to drive a
spike. Extracellular methods do not artifactually lead to single-input re-
cordings, because we occasionally encountered LGN neurons with EPSPs
arising from more than one ganglion cell, as evidenced by superimposed
EPSP waveforms [Sincich et al. (2007), their supplemental Fig. 2; see also
Weyand (2007)] and absence of a refractory period. Such cells were not
analyzed further because it was impossible to assign individual EPSPs to
a particular ganglion cell. Stimuli larger than the receptive field center
were more likely to lead to EPSPs from multiple ganglion cells. To min-
imize this problem, the smallest stimulus that drove the neuron robustly
was used.

Visual stimulus. Stimuli were provided by an LED beam restricted to
the receptive field center, as detailed previously (Sincich et al., 2007).
Retinal EPSPs were measurable for 37 of the 240 cells recorded. The
choice of stimulus protocol for the LED’s temporal luminance flicker was
influenced by several factors. A primary consideration was the limited
time available for recordings. The signal-to-noise ratio needed to record
EPSPs extracellularly meant that the electrode was often very close to, if
not touching, the cell. Recordings rarely lasted more than an hour, be-
cause the neuron could be injured with even minor relative motion be-
tween the electrode and the cell. This time constraint made it difficult to
compare different stimuli in the same cell. We conducted pilot studies
that showed that neither correlated Gaussian nor random white noise
drove neurons as effectively as luminance flicker that resembled the tem-
poral fluctuations that occur when looking at natural scenes (van Hat-
eren, 1997; van Hateren et al., 2002). Such stimuli follow a 1/frequency
power law, which is weighted toward lower temporal frequencies. In
addition, the histograms of luminance values follow a non-Gaussian
distribution that is often skewed and has nonzero kurtosis (van Hateren,
1997; Simoncelli and Olshausen, 2001).

We created 5 s luminance sequences that had naturalistic temporal
frequency power spectra between 0.2 and 80 Hz. These stimuli were
derived by first generating a series of independent samples in time from a
non-Gaussian distribution that mimics distributions observed in natural
scenes (computed by adding a uniformly distributed random variable
over the interval [0, 1] to the square of another Gaussian random variable
of unit variance and zero mean). We then Fourier-filtered the result to
have a mean power spectrum that followed a 1/ft

� distribution, with ft �
temporal frequency, and � � 0.7. The stimuli power spectra are available
in the paper by Sincich et al. (2007) (their supplemental Fig. 1). To
compute information rates for the spike trains, a series of unique stimuli
was presented as well as one representative 5 s stimulus which was inter-
leaved between the unique sequences. We note that the stimuli were
presented on a black background, rather than a background at the mean
stimulus luminance, because higher contrasts could be achieved and it
improved responses for OFF cells. Consequently, the stimulus fluctua-
tions were not symmetric around the mean luminance, which led to a
positive shift in the probability distributions of the filter projection val-
ues (supplemental Fig. 1a– c, available at www.jneurosci.org as supple-
mental material).

Total information conveyed by single spikes. To compute information
about the stimulus carried by single spikes, Ispike, we repeated one 5 s
random stimulus segment between 76 and 400 times (mean � 188).
Based on these repeated presentations, we computed the time-varying
average firing rate r(t) for this noise sequence, and the information about
the stimulus as follows:

Ispike �
1

T�dt
r�t�

r�
log2

r�t�

r�
, (1)

where r� is the average firing rate (Brenner et al., 2000). The values of
mutual information contain a positive bias, which decreases as more data
are collected (Treves, 1995; Strong et al., 1998; Brenner et al., 2000). To
correct for this bias, we computed information values by including dif-
ferent fractions of the available repetitions (80%, 85%, 90%, 95%,
100%). For a given fraction of the data (except for 100%), 1000 different
combinations of the individual repetitions were used. In each case, we
computed information according to Equation 1. We then used linear
extrapolation to find the projected information value if infinite numbers
of spikes could be collected (Strong et al., 1998; Brenner et al., 2000). The
linear dependence gave a good fit for all cells included in the analysis.

This information measure makes no assumptions about the number
of relevant stimulus features or about the shape of the nonlinear gain
function (also known as a static nonlinearity) describing the dependence
of spike probability on the relevant stimulus components. Therefore it
can be used to quantify the performance of any model of a reduced
dimensionality, where only a small number of stimulus features are as-
sociated with the firing rate.

Finding relevant stimulus features. The relevant stimulus features were
computed with two different methods. First, as a control, we found one
relevant stimulus feature using the reverse correlation method (de Boer
and Kuyper, 1968; Rieke et al., 1997) and correcting for stimulus corre-
lations (Sen et al., 2001; Theunissen et al., 2001; Ringach et al., 2002;
Schwartz et al., 2006). This involves first computing a vector of the spike-
triggered average (STA), by averaging all stimuli that elicited a spike, and
then multiplying by the inverse of the covariance matrix. These vectors
ranged 200 ms before a spike, and were binned every 4 ms. Stimuli were
resampled at 250 Hz to match the bin size of the spike analysis. No
correction was made to account for the EPSP-spike delay (usually �1
ms), as it was smaller than the bin size used to compute the filters. We will
refer to the resultant vector as the decorrelated STA (dSTA). Because
multiplication by the inverse of the stimulus covariance matrix often
leads to noise amplification at high temporal frequencies, one common
way to address this issue is to use a pseudoinverse of the covariance
matrix (David and Gallant, 2005). A pseudoinverse is computed by di-
agonalizing the covariance matrix, as in the process of creating the in-
verse matrix, but including only some of the eigenvectors multiplied by
the inverse of their respective eigenvalues. This effectively filters out
poorly sampled components to yield a regularized decorrelated STA (rd-
STA). For each cell, we chose the cutoff on the eigenvalues of the stimulus
covariance matrix that led to the best predictive power on the test part of
the data, which was not used in computing the STA.

Second, we used the method of maximally informative dimensions
(MID) to find relevant stimulus features (Sharpee et al., 2004). The algo-
rithm is available online at http://cnl-t.salk.edu. Relevant stimulus di-
mensions were found by searching through the space of all possible stim-
ulus combinations to find the dimensions that accounted for maximal
information (or variance: (Sahani and Linden, 2003; Machens et al.,
2004; Sharpee, 2007)) in the neural response. Information accounted for
by a particular dimension v can be computed as:

I�V� ��dxPV(x�spike)log2

PV�x�spike)

PV�x�
, (2)

where PV(x) is probability distribution of stimulus components along
dimension v and PV(x�spike) is the analogous probability distribution
computed by taking only stimulus segments that lead to a spike (Adel-
man et al., 2003; Agüera y Arcas et al., 2003; Paninski, 2003; Sharpee et al.,
2004; Fairhall et al., 2006). We briefly outline the logic behind this argu-
ment as described by Adelman et al. (2003). Let us start with the expres-
sion for the overall information carried in the arrival times of single
spikes, Ispike. Instead of the time average, Ispike can be rewritten as an
average over all of the presented stimuli:

Ispike ��dsP�s�
P�spike�s)

P�spike�
log2

P�spike�s)

P�spike)
, (3)
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where s represents different vectors in the stimulus space describing
presented stimuli. Using Bayes’ rule this expression can be further trans-
formed into the following:

Ispike ��dsP�s�
P�s�spike)

P(s)
log2

P�s�spike)

P�s�

� �dsP(s�spike) log2

P�s�spike)

P�s�
. (4)

The last variant of the equation for the overall information carried by the
arrival times of single spikes is very similar to the expression for the
information with respect to stimulus components along dimension v.
The only difference is that instead of the full, unreduced stimulus s, we
take stimulus components along this direction v of interest.

Predictive power of reduced models: cross-validation. To estimate a
model’s predictive power, data from unrepeated stimuli were separated
into training and test datasets (75% for the training dataset and 25% for
the test dataset). All relevant dimensions (STAs, dSTAs, rdSTAs, and
MIDs) were computed using only unrepeated parts of the dataset. These
data were then further separated into a “training” and “test” subsets to
minimize overfitting (David and Gallant, 2005) and to compute error
bars on filter estimates (Efron and Tibshirani, 1998). In the case of rd-
STA, the optimal cutoff (see above) was selected by optimizing predictive
power on the test dataset.

To characterize predictive power of reduced models based on the first
MID and the two MIDs considered together, we took these features as
estimated from the dataset based on neural responses to unrepeated
stimuli and computed information according to Equation 2 on the data-
set based on the responses to repeated stimuli. This separation of data was
necessary to ensure that predictive power was not affected by overfitting
effects. Even without overfitting, information I(v) along any particular
dimension v is positively biased for a dataset of finite size. This bias was
removed according to the same procedure as described above for the case
of information conveyed by single spikes, except that the data subsets were
obtained from different segments of the stimuli. Nonlinear gain functions
shown in supplemental Figure 1g–i (available at www.jneurosci.org as sup-
plemental material) were computed on the test part of the unrepeated data.

The percentage of information explained was computed as a ratio
between information carried by single spikes (as estimated from repeated
trials) and information accounted for by relevant dimensions derived
from the training part of the unrepeated trials about a neuron’s responses
to the repeated trials.

Finding relevant retinal spike train features. We adapted the methods
used to find relevant stimulus features to quantify the information car-
ried by different retinal spike sequences. In this case, retinal spike trains
were treated as stimuli binned every 4 ms, where a value of 1 was given at
each occurrence of an EPSP, and was 0 otherwise. Such stimuli are binary
by construction, and do not conform to Gaussian statistics. Because the
MID algorithm can be used with non-Gaussian stimuli, we used it to find
the relevant features of spike trains as well. The computation began by
computing a spike-triggered average by averaging 200 ms segments on
retinal spike trains that preceded a thalamic spike. This vector was used to
initialize optimization for the first relevant feature v. The probability
distribution of components along dimension v PV(x) and PV(x�spike),
which are necessary for computation of information according to Equa-
tion 2, were computed by projecting segments of retinal spike trains onto
v. This computation is well defined for binary vectors composed on spike
train segments, provided the spike-triggered feature v has at least one
nonzero value. This condition was always fulfilled in the case of optimi-
zation of the first feature, which was initialized using the STA. The search
for the second relevant feature was initialized using a random segment of
the retinal spike train. In cases where this segment had no spikes, several
1 values were added at random. The remaining computation of most
informative retinal spike trains followed the algorithm for finding rele-
vant stimulus features.

Results
Spike information gain across the retinogeniculate synapse
In recordings of macaque LGN neurons acquired with flicker
stimulation of the receptive field center, isolated EPSPs as well as
EPSPs which evoked an LGN spike were recognizable (Fig. 1). We
used a subtraction technique to identify EPSP waveforms which
were partially merged with the spike waveform (Sincich et al.,
2007). This allowed us to reconstruct the complete spike train of
the retinal ganglion cell that provided input to the LGN cell (Fig.
1c). From these reconstructed spike trains, it was clear that the
LGN neuron’s spike rate was a temporally varying fraction of the
ganglion cell’s spike rate (Fig. 1d). The inter-EPSP intervals had
an absolute refractory period, indicating that the input arose
from only one neuron. The absence of surround stimulation
minimized the contribution from additional ganglion cells rep-
resenting the field surround. The evidence for this is that larger
stimuli often evoked additional EPSPs that superimposed with
the predominant EPSP. More than 95% of the LGN spikes were
driven by the primary EPSP. The remaining 5% either lacked an
EPSP, or were preceded by an EPSP at an interval longer than the
ganglion cell’s refractory period, and thus could not be defini-
tively considered as driving the LGN spike. Therefore the spike
train transformation can be accounted for almost completely in
these connected cell pair recordings.

To characterize the efficiency of stimulus encoding across this
synapse, we asked whether the rate of information transmission
changed between the retinal and LGN spike trains. Because LGN
firing rates were always lower (Fig. 2a), one might expect that
information rates would also be lower based on encoding with
independent spikes, a consequence of the data processing in-
equality (Cover and Thomas, 1991). To measure the information
rates directly, we repeated a single 5 s flicker sequence multiple
times and computed the average information carried by single
spikes (Strong et al., 1998; Brenner et al., 2000; Reinagel and Reid,
2000). For the ON-center cell pair shown in Figure 1, we found
that information increased from 0.815 � 0.002 bits/spike for the
ganglion cell to 1.155 � 0.003 bits/spike for the LGN neuron.
Similar increases were present for all the recorded pairs (Fig. 2b),
with LGN neurons averaging 36% more bits per spike than gan-
glion cells (supplemental Table 1, available at www.jneurosci.org
as supplemental material). As a control exercise, simply dropping
the appropriate fraction of spikes at random from the RGC spike
train to match the LGN spike rate for each cell pair produced no
increase in bits/spike, as expected theoretically (Fig. 2c). Finally,
we note that the computation of information carried by the ar-
rival times of single spikes does not take into account information
associated with the absence of a spike at a particular time (Fairhall
et al., 2006). However, information in the “silence” between
spikes was minor (mean 18% of the information carried by single
spikes), and did not affect any of the results described below
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material). Therefore, on a spike-by-spike basis, LGN neu-
rons can reliably signal the differences between many more stim-
uli than retinal ganglion cells.

Multiplying the information per spike by the firing rate
yielded the average rate of information transmission. For the
example cell pair in Figure 1 the rate remained remarkably con-
stant: 33.4 � 3.5 bits/s for the ganglion cell and 34.6 � 5.0 bits/s
for the LGN cell. This perfect information transfer rate was main-
tained by one-third of the cell pairs we recorded (Fig. 2d), indi-
cating that the neural coding across the retinogeniculate synapse
often attains fundamental statistical limits, because information
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about the incoming stimuli cannot in-
crease after additional operations on the
spike train (Cover and Thomas, 1991).
One way for LGN neurons to achieve loss-
less information transmission would be to
respond with perfect fidelity to retinal in-
puts, but this is not a possible mechanism
given the substantially lower spike rates of
LGN neurons. In the next sections, we
consider how this increased information
transmission rate might be accomplished.

Recoded signals increase
information efficiency
To elucidate how LGN neurons encode
stimuli more efficiently, we first examined
whether LGN spikes encode different fea-
tures of the stimulus than the retinal
spikes. As an initial control analysis, we
computed the spike-triggered average fil-
ters and their decorrelated versions, all of
which revealed no major differences be-
tween the LGN neuron featured in Figure
1 and its connected ganglion cell (Fig. 3).
As an alternative analysis, we computed
the most relevant stimulus features by
searching for those that accounted for the
maximal amount of mutual information
between stimulus variations and the LGN
or retinal spikes, respectively (Sharpee et
al., 2004, 2006). The result was a set of
two maximally informative dimensions
(MIDs) which represent the temporal fil-
ters for each neuron. For the cell pair illus-
trated in Figure 1, we found that spike
probability was influenced by at least two
filters, both differing significantly between
the retinal and LGN neuron during the
time interval from 25 to 100 ms before a
spike, as made evident by subtracting the
filters from one another (Fig. 4a,b). Root-
mean square amplitudes of subtracted fil-
ters were significant for the population
(MID1: 0.038 � 0.005 SD; Student’s t test,
p � 0.001. MID2: 0.058 � 0.013 SD, p �
0.001) compared with spike-triggered av-
erages (0.018 � 0.01 SD). The MID2 filters
for the featured cell pair had ON peaks
shifted by 20 ms compared with the MID1
filters. These results suggest that retinal
ganglion cells and LGN neurons encode
different features in the visual stimulus.

Beyond the difference in the relevant
stimulus features, the firing rate of retinal
and LGN neurons could be modulated to a
different degree by stimulus components
along these features. To characterize this
modulation, we compared the spike rate
gain functions, defined as the average
spike rate resulting from stimuli with the
same components along the relevant fea-
tures, normalized by the mean rate across
all stimuli. For the example cell pair, the

Figure 1. Extracellular recording of retinal input to a single LGN neuron. a, Segment of luminance flicker used to stimulate the
receptive field center of an ON-center magnocellular LGN neuron. Center diameter � 0.5°, mean center luminance � 6.1 cd/m 2,
surround luminance � 0.002 cd/m 2. b, Raw microelectrode voltage trace recorded in response to the 5 s flicker segment shown
in a. c, Expanded view of the trace outlined in red in b, showing 2 isolated retinal EPSPs followed by 3 LGN spikes, one of which is
small because it failed to propagate back into the soma and dendrites. Each spike was preceded by an EPSP (red arrows) and was
verified by off-line analysis to reconstruct the spike trains. d, Peristimulus time histogram of the firing rates of the ganglion cell
(RGC, red) and LGN neuron (black) in response to a portion of the repeated stimulus shows that the LGN rates are a variable fraction
of the RGC rates. Histogram compiled from 295 stimulus repeats.
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combined MID filters of the LGN neuron yielded a spike rate gain
that was always higher than its retinal ganglion cell, reaching 51%
greater at its peak (Fig. 4c,d). When the MID1 or MID2 filters
were considered separately, there was either a modest or negligi-
ble difference in spike rate gain functions (supplemental Figs. 1,
3, available at www.jneurosci.org as supplemental material).

Across the population of 9 cells analyzed,
the peak spike rate gains of the combined
filters were consistently higher for the
LGN neuron than the ganglion cell (Fig.
4e). The higher spike rate gains can also be
shown directly, although less comprehen-
sively, by examining peristimulus time
histograms of gains for repeated stimuli.
Regardless of cell type, LGN neurons con-
sistently achieved higher gains when stim-
uli drove cells above the mean firing rate,
and lower gains when stimuli suppressed
firing (Fig. 4f). These results suggests that,
by being able to change its instantaneous
firing rate to a greater degree, an LGN neu-
ron can signal finer distinctions between
stimuli than its connected ganglion cell,
and is consistent with the LGN neuron’s
higher information capacity.

To fully and quantitatively assess a neu-
ron’s coding ability, the frequency with
which different neural responses are elic-
ited by the stimulus ensemble must be
taken into account, as well as their vari-
ability. Either Shannon information or
Fisher information can be used for this
purpose. Of the two quantities, only Shan-
non information can be used to quantify
the accuracy of the transformation be-
tween stimuli and spikes either with or
without a particular model of the transfor-
mation. Results from model-free analysis
based on the Shannon information were
shown in Figure 2. Here we compute the
same information with a reduced model
built from the combined MID1 and MID2
filters. In Figure 5 we show that the in-
creased information carried by LGN spikes
(like Fig. 2b) and the preserved overall
rates of information transmission (like
Fig. 2d) could both be captured by the re-
duced model. In particular, for the exam-
ple cell pair, stimulus encoding based on
MID filters of the LGN cell provided
1.06 � 0.02 bits/spike, compared with the
corresponding value for the ganglion cell
of only 0.74 � 0.02 bits/spike. The in-
creased information per spike was found
for all the recorded pairs (Fig. 5a), with the
LGN filters averaging 40% more bits per
spike than ganglion cells. (A model-based
analysis computing Fisher information
yielded similar results, see supplemental
Fig. 4, available at www.jneurosci.org as
supplemental material). In terms of infor-
mation rate for this cell pair, the reduced
model produced a rate of 36.9 � 0.6 bits/s

for the LGN neuron, while its ganglion cell’s rate was not signif-
icantly different at 34.5 � 0.8 bits/s. The same third of the popu-
lation showed a preserved information rate (Fig. 5c) as when
measured from spikes alone (Fig. 2d).

The ratio between the information carried by MID filters and
the total information available in the spike trains gives a measure

Figure 2. Increased information efficiency from retina to LGN. a, Mean retinal ganglion cell (RGC) spike rates are higher than
mean LGN spike rates during repeat stimulus presentation. Population averages: RGC � 38.2 spikes/s; LGN � 21.1 spikes/s. Each
cell pair is represented by a circle, color coded by LGN neuron type when known. Error bars are �1 SD, computed from repeated
stimuli. b, Individual spikes of LGN cells always carry more information about the stimulus than corresponding input RGC spikes.
c, Information capacity in redacted RGC spike trains (randomly dropping a fraction of the spikes to equal the number in the LGN
spike train) does not differ from observed RGC trains. d, Multiplying firing rate (a) by bits/spike (b) reveals that LGN neurons
occasionally attain transmission rates with no loss of retinal information (data points on the unity line). Population averages:
RGC � 31.9 bits/s; LGN � 21.8 bits/s. Error bars are �1 SD, incorporating the errors when computing bits/spike (too small to plot
usefully in b and c), and the variation in firing rate during repeated stimuli.

Figure 3. Significant differences did not exist between RGC and LGN filters computed as spike-triggered averages (STAs, in a),
or as decorrelated STAs (b). Regularization of the decorrelated STA (c) smoothed noise out of the filters, but did not yield a
prominent difference in filter shape. Although these decorrelated filters resembled those found previously using uncorrelated
noise techniques (Chander and Chichilnisky, 2001; Reid and Shapley, 2002), they were noisier than the standard STA. Error bars are
SEMs, computed from data subsets; in a and b, they were too small to be usefully plotted. RMS amplitudes of subtracted STAs
averaged 0.018 � 0.01 SD, significantly lower than the RMS values obtained from MID features ( p � 0.001 for both filters, see
Fig. 4a,b).
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of how well the MID filters capture retinogeniculate information
transmission. For the example cell pair, the combined MID
model performed better than the MID filters individually, ac-
counting for 91% and 92% of the information carried by single
spikes of the retinal and LGN cells respectively (supplemental
Table 1, available at www.jneurosci.org as supplemental mate-
rial). There was no significant difference in the percentage of
information accounted for by the combined MIDs across the
population ( p � 0.73, Wilcoxon paired test). The MID filters
explained a mean of �85% of the total information available in
the spike trains (Fig. 5b), and often nearing 100%. Therefore, as a

reduced model of the retinal and LGN neural activity, the com-
bined MID filters captured most of the information that could be
extracted about the stimulus in the spike trains. Because infor-
mation here was computed indirectly by a stimulus reconstruc-
tion procedure, the quantities represent a lower bound on the
amount of total information carried in single spikes (Strong et al.,
1998; Reinagel et al., 1999; Reinagel and Reid, 2000; Adelman et
al., 2003; Fairhall et al., 2006). The remaining �15% of the infor-
mation in the spike train was presumably provided by higher-
order filters (which we could not compute because of data limi-
tations), or by inputs from other neurons that were undetectable

Figure 4. Stimulus representation changes from retina to LGN. a, b, Normalized MID filters for the RGC (red) and LGN neuron (black) are temporally altered, as revealed by subtracting the filters
(blue). MID1 yields the most information, while MID2 represents an orthogonal stimulus dimension adding maximal information to the first. Error estimates computed over data subsets had average
SEMs �0.01 for each point along all filters (data not shown). c, d, Spike rate gain measures how far above the mean firing rate (at gain � 1) any stimulus can drive the cell, plotted as a function of
projection value distributions (see Materials and Methods for details). Filter combinations significantly increase the spike rate gain of the LGN neuron (d) over the RGC (c). Projection values with
positive SDs represent stimuli with increasing resemblance to the filters. e, Population data comparing RGC and LGN peak spike rate gains for all filters (e.g., the peaks in supplemental Fig. 1g–i,
available at www.jneurosci.org as supplemental material), normalized to the peak RGC STA rate gain. The combined MID filters exhibited the highest gains. f, Peristimulus time histograms of spike
rate gains for 3 cells, in response to the same repeated stimuli. Stimulus segment is the same as shown in Figure 1d. When LGN gains (black) are above the unity gain line (gray), they exceed RGC gains
(red); and when below unity, they are lower than RGC gains, suggesting a greater modulation range for LGN neurons. The information transmission ratios for these cell pairs were: magno ON � 1.0;
magno OFF � 0.74; parvo ON � 0.75.
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by extracellular recording. These results lead us to conclude that
the filter transformations and the shift in gain functions realized
by LGN neurons explain the lossless information transfer from
the eye to cortex achieved by some cell pairs.

Temporal summation underlies spike information gain
What might be the biophysical mechanism for the precise selec-
tion of retinal spikes relayed to cortex? In these recordings, single
isolated EPSPs were insufficient to bring an LGN neuron to
threshold (Sincich et al., 2007). For an LGN spike to occur, at
least two EPSPs had to arrive within �30 ms of each other. For
our example cell pair, representative recordings of EPSPs and

spikes driven by a repeated stimulus that
closely matched the MID1 filters showed
that solitary EPSPs reliably preceded each
EPSP that generated an LGN spike (Fig.
6a). Linear models of EPSP summation
can predict the responses of LGN neurons
to a given retinal spike train arising from a
spot stimulus (Carandini et al., 2007; Casti
et al., 2008). These observations suggest
that specific retinal spike sequences are
likely to transmit information more effec-
tively than others.

Quantitatively, one can determine
what linear combinations of retinal spikes
were most effective in eliciting spikes from
the LGN neuron, using a strategy similar
to the one followed for stimulus filters. In-
stead of quantifying information about the
stimulus, we treated 200 ms of the EPSP
train before each LGN spike as the vector
to be analyzed. By this means, we found
that the two most informative retinal in-
put sequences were consistent for all LGN
cells. The primary retinal train reflected
the EPSP summation mechanism, with an
ever-increasing probability beginning 35
ms before an LGN spike (Fig. 6b). The sec-
ondary retinal train, averaging 22% as
much information as the first, showed a
distinct inhibitory effect such that the
probability of an LGN spike increased
when retinal spikes were less likely during
the prior 5–50 ms (Fig. 6c). This decrease
in firing probability may represent the ef-
fect of several inhibitory sources, possibly
working in concert: interneuron GABA
currents (Blitz and Regehr, 2005), deinac-
tivation of T-type calcium current (Lu et
al., 1992; Alexander et al., 2006), or spike
after-hyperpolarizing potentials (Crunelli
et al., 1987; Williams et al., 1996; Powers et
al., 2005). When the spike train features
were considered in combination, they in-
creased information flow for the popula-
tion by only 5% compared with the pri-
mary spike train feature. This small
increase for combined trains suggests that
the spike train features provide redundant
contributions to coding (had they oper-
ated independently, their summed infor-
mation would have been 4 times larger

than the information in the combined spike train features).
Therefore information transmission occurs predominately
through EPSP summation, and is only modestly improved with
the addition of an inhibitory effect, whether originating from
interneurons or intrinsic currents.

The combination of these two summation mechanisms was
sufficient to re-encode retinal spikes with minimal loss of infor-
mation. As an independent check on whether the spike train
filters in Figure 6, b and c, adequately represent the firing behav-
ior of LGN neurons, one can convolve the retinal spike trains with
these filters and recompute the information carried in the result-
ing spike train. In this analysis, the relevant spike train features

Figure 5. Maximally informative filters account for the increased efficacy of information transfer. a, The combined MID filters
considered as a model of spike activity manifest the higher information capacity of single LGN spikes seen experimentally across
the population (cf. Fig. 2b). Cell pairs are represented by circles, color coded by LGN neuron type. b, The combined model accounts
for most information available in the spike trains (means: RGC�79�18%; LGN�83�15%). c, The combined filter model also
exhibits the same degree of lossless information transfer rate found experimentally (cf. Fig. 2d). Error bars are �1 SD, incorpo-
rating the errors when computing bits/spike (too small to plot usefully in a and b), and the variation in firing rate during repeated
stimuli.

Figure 6. Short-term retinal spike summation improves LGN information transfer efficiency. a, Luminance steps, indicated in
white, of a repeated stimulus that resembles the MID1 filters (top, aligned to a selected spike) lead to EPSPs that summate to drive
LGN spikes, evident in raw traces (middle) as well as raster plots. Spike rates and corresponding spike rate gains (bottom) show
that the LGN neuron (black) exhibits greater firing rate modulation than the ganglion cell (red). b, c, Different retinal spike trains
convey different amounts of information. The population mean retinal train, showing increased EPSP probability during the 30 ms
before an LGN spike, carries the most information (b), while the next most informative train shows inhibition over a longer period
before an LGN spike (c). Shaded areas are �1 SD.

Sincich et al. • Preserving Information in Neural Transmission J. Neurosci., May 13, 2009 • 29(19):6207– 6216 • 6213



and the nonlinearities were estimated from unrepeated data,
while the spike train transformation was applied to retinal spike
trains in response to repeated stimulus segments (see Materials
and Methods). We found that spikes in the transformed retinal
spike trains were encoding stimuli just as efficiently as the actual
LGN spikes (correlation coefficient r � 0.99, data in supplemen-
tal Table 1, available at www.jneurosci.org as supplemental ma-
terial). This result confirms that the transformation of retinal
spike trains occurs primarily through an EPSP summation mech-
anism, and is sufficient to achieve occasionally lossless informa-
tion transmission.

Discussion
From early paired recordings of connected neurons, it has often
been noted that the typical spike sequence changes from one
neuron to the next, suggesting that a change in feature represen-
tation also occurs (Hubel and Wiesel, 1961; Bishop et al., 1962;
Hamamoto et al., 1994; Benardete and Kaplan, 1997; Ruksenas et
al., 2000). There has been considerable progress in elucidating
how stimuli are represented in spike trains, especially in the visual
system (Bialek et al., 1991; Meister and Berry, 1999). By compar-
ison, there has been far less effort aimed at understanding how or
why stimulus representations change from one neuron to the
next. One reason is the technical difficulty of recording from two
cells simultaneously for the length of time it takes to characterize
firing behavior. Another reason is that synaptic convergence is
quite high in most neural systems. Instances where a neuron
receives input from only one or a few presynaptic cells are un-
common. Such an arrangement, though not necessary, makes the
analysis of spike coding more tractable. The calyx of Held in the
brainstem is an ideal example (von Gersdorff and Borst, 2002),
but access to the presynaptic and postsynaptic cells is difficult,
except in vitro. In neocortex, where cells are multiply innervated,
some insights about coding have been obtained from connected
cell pairs (Thomson et al., 2002), but the generally hyperpolar-
ized state of neurons in vitro precludes expression of the normal
activity pattern expected in vivo. Since neural coding is likely to be
typical only in vivo, it is worthwhile to find an intact system where
the inputs and outputs of a neuron can be readily recorded and
realistic stimuli can be used. The macaque LGN comes close to
fulfilling these criteria.

We have shown that the relevant stimulus features are more
efficiently coded by LGN neurons than by retinal ganglion cells,
based on the finding that each LGN spike conveys more informa-
tion than is carried by each retinal spike. This boost in informa-
tion per spike helps to compensate for a potentially large loss of
information, as it has been recognized that many retinal EPSPs do
not lead to LGN spikes (Hubel and Wiesel, 1961). In our popu-
lation of neurons, mean EPSP efficacy was 53% during the
unique stimulus sequences. In the presence of synaptic noise, one
might have expected the information transfer efficacy to end up
at or below 53%, as it did when retinal spikes were dropped
through random failures in synaptic transmission (Fig. 2c). In-
stead, information transfer efficacy averaged 72% (Fig. 2d). No-
tably, EPSP efficacy never reached 100% in any cell, yet a third of
the population achieved lossless information transfer rates. In
these cases, the increase in information per spike was the maxi-
mum allowed by the laws of information transmission (Cover
and Thomas, 1991). This result indicates that LGN neurons alter
the incoming representations of the visual stimulus, and that a
reliable mechanism determines which EPSPs elicit LGN spikes
(Carandini et al., 2007; Casti et al., 2008).

The search for relevant stimulus dimensions revealed two dis-

tinct temporal filters for retinal ganglion cells as well as LGN
neurons. Multiple filters have been reported in salamander reti-
nal ganglion cells (Fairhall et al., 2006). However, the filters in the
macaque LGN were not simply inherited from the retina. By
recording the EPSPs as well as the LGN spikes, we could demon-
strate that the retinal and LGN filters were genuinely different.
The higher information content of LGN spikes suggests that the
altered filters represent the statistics of the naturalistic stimuli
better than ganglion cells. Although presynaptic and postsynaptic
cells have not been recorded simultaneously in V1, it is clear that
the receptive fields of both simple and complex cells are also best
described by multiple filters (Touryan et al., 2002; Rust et al.,
2005; Chen et al., 2007). Thus neural responses at every major
stage of the early visual system—retina, V1, and now LGN—
appear to be influenced by multiple stimulus combinations, with
signal transformations at every step of the pathway. Spike-
triggered averaging methods have proved insufficient for reveal-
ing the full complexity of neural responses. When used with non-
Gaussian stimuli, these methods are inherently biased, leading to
features that are shifted away from relevant dimensions by a finite
vector that does not disappear even in the limit of infinite data
(Paninski, 2003; Sharpee et al., 2004). This finite bias is large
enough to obscure differences between the relevant stimulus fea-
tures of retinal and LGN neurons (Fig. 3).

The increased information per spike means a greater modu-
lation of the average firing rate in response to different stimuli
relative to the average rate for all stimuli (Eq. 1). There are mul-
tiple ways to increase firing rate modulation. Previous in vitro
studies showed that ganglion cell activity consists of separate
“events” of high firing separated by epochs with no spikes (Berry
et al., 1997; Fairhall et al., 2006). In this case, information per
spike can be increased by reducing the duration of the firing
events, or by dropping some events altogether. Given fewer
events, when they do occur they signal stimuli from a smaller
subset, reducing the uncertainty of which stimulus was presented
and thus leading to more information. Alternatively, shortening
the average duration of firing events allows one to distinguish a
greater number of stimuli. Under our stimulus conditions, the
number of firing events was similar for connected neural pairs
( p � 0.1, Wilcoxon paired test), and the firing events (as defined
by Berry et al., 1997) had similar duration between minima ( p �
0.3, Wilcoxon paired test). Therefore, neither of these mecha-
nisms explain the information capacity differences between gan-
glion cells and LGN neurons. Instead, the firing events in vivo
appeared better “defined” by clear temporal sharpening of the
firing peaks rather than the absence of firing (Figs. 1d), reflecting
the importance of changes in spike rate gain as a means of in-
creasing information capacity in single spikes.

To understand how the LGN neurons could achieve greater
reliability in reporting different stimuli, we analyzed segments of
the retinal spike trains that were most effective in eliciting LGN
spikes. This analysis showed that inputs arriving within a �30 ms
period determine LGN firing. This is the same period during
which nearly all EPSPs summate to reach spike threshold (Car-
andini et al., 2007; Sincich et al., 2007). Over this time scale, such
summation is mediated mostly by NMDA current, with the effect
being more pronounced at more depolarized membrane poten-
tials (Sillito et al., 1990; Blitz and Regehr, 2003; Augustinaite and
Heggelund, 2007). Very closely arriving EPSPs yield the most
reliable LGN responses, and consequently if one computed reti-
nal filters from such EPSPs they would be nearly identical to LGN
filters. However, as the temporal jitter between EPSP pairs begins
to increase, the first “priming” EPSP is shifted in time and would
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begin to introduce noise into the retinal filters that would lower
their information capacity. A second source of noise for the ret-
inal spikes would be the EPSPs occurring at intervals longer than
30 ms and not associated with LGN spikes (several examples
appear in Fig. 6a). These unsuccessful EPSPs occur throughout
the stimulus ensemble, bringing irrelevant stimuli into the filter
computation. The requirement for EPSP summation constrains
the relevant stimuli to those that generate EPSP sequences which
are more effective for reaching an LGN neuron’s threshold,
thereby refining the stimulus representations transmitted to cor-
tex. Consequently, reliability is increased and LGN neurons can
transmit more information with fewer spikes.

EPSP summation may not be the only way to raise informa-
tion content per spike. In the cat inferior colliculus of the audi-
tory system, it was found that more information was carried by
single spikes when spike trains were sparser (Escabí et al., 2005).
It was proposed that the cells with a lower firing rate had a higher
spike threshold, and that this higher threshold could account for
the increased information capacity (Goldman, 2004; Escabí et al.,
2005). When the information in bits per spike was multiplied by
the spike rate, this produced an information transmission rate
that was always lower for spike trains with lower average firing
rates. In contrast, when retinal ganglion cells or LGN neurons are
considered alone, we found no relationship between spike rate
and bit rate (RGC, p � 0.5; LGN, p � 0.1; Fisher Z transform
test). As shown in Figure 5c, in one-third of the LGN cells, infor-
mation rate did not decrease despite the decrease in the firing
rate. Instead, the reencoding that occurs in LGN neurons allowed
some of them to maintain their information transmission rates,
despite a firing rate that was lower than retinal ganglion cells. This
suggests that a difference in spike threshold is unlikely to be a
sufficient mechanism for the preserved information transfer in
the LGN.

Computations by neurons are usually cast in terms of an op-
eration performed on multiple convergent inputs to yield an out-
put. Our analysis of a major synaptic relay in the vertebrate visual
system shows that even when neurons are driven by only one
input they can perform a time-dependent operation having bio-
logical utility. The temporal receptive field is altered rather than
faithfully relayed, information is well conserved, and the spike
rate is reduced, implying a sparser representation at a lower met-
abolic cost (Laughlin, 2001; Olshausen and Field, 2004). If the
information content per spike continues to increase along the
visual pathways, it would help explain how higher cortical areas
can represent complex stimuli with so few spikes.

References
Adelman TL, Bialek W, Olberg RM (2003) The information content of re-

ceptive fields. Neuron 40:823– 833.
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