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Sharpee TO, Miller KD, Stryker MP. On the importance of static
nonlinearity in estimating spatiotemporal neural filters with natural
stimuli. J Neurophysiol 99: 2496-2509, 2008. First published
March 19, 2008; doi:10.1152/jn.01397.2007. Understanding neural
responses with natural stimuli has increasingly become an essential
part of characterizing neural coding. Neural responses are commonly
characterized by a linear—nonlinear (LN) model, in which the output
of a linear filter applied to the stimulus is transformed by a static
nonlinearity to determine neural response. To estimate the linear filter
in the LN model, studies of responses to natural stimuli commonly use
methods that are unbiased only for a linear model (in which there is
no static nonlinearity): spike-triggered averages with correction for
stimulus power spectrum, with or without regularization. Although
these methods work well for artificial stimuli, such as Gaussian white
noise, we show here that they estimate neural filters of LN models
from responses to natural stimuli much more poorly. We studied
simple cells in cat primary visual cortex. We demonstrate that the
filters computed by directly taking the nonlinearity into account have
better predictive power and depend less on the stimulus than those
computed under the linear model. With noise stimuli, filters computed
using the linear and LN models were similar, as predicted theoreti-
cally. With natural stimuli, filters of the two models can differ
profoundly. Noise and natural stimulus filters differed significantly in
spatial properties, but these differences were exaggerated when filters
were computed using the linear rather than the LN model. Although
regularization of filters computed under the linear model improved
their predictive power, it also led to systematic distortions of their
spatial frequency profiles, especially at low spatial and temporal
frequencies.

INTRODUCTION

Over the course of nearly 50 years neurons in the primary
visual cortex have been studied with a variety of stimuli,
ranging from the classic studies using edges, bars, and moving
gratings, to more recent studies with random inputs and stimuli
derived from the natural environment, as reviewed by Felsen
and Dan (2005) and Rust and Movshon (2005). It is becoming
increasingly important to develop unified models for neural
responses to stimuli with a wide range of statistical properties,
ideally extending to the fully natural case.

To accomplish this, it is important to be able to derive a
neural response model from responses to natural stimuli. One
cannot simply derive a response model from responses to a
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simpler ensemble, such as noise, and then extrapolate to the
natural case. Typically there are significant differences be-
tween response models derived for a given cell from responses
to different stimulus ensembles. In particular, neural response
models derived from one stimulus ensemble often provide
better predictions for neural responses to novel stimuli of the
same type than to novel stimuli with different statistical prop-
erties (David et al. 2004; Sharpee et al. 2006; Woolley et al.
2006). The two general reasons for this are that neural re-
sponses are nonlinear and that they are adaptive. Even if neural
responses were stationary and nonadaptive, it could be difficult
to build a single model that adequately describes responses to
different stimulus ensembles that evoke different regimes of
neural responses. In addition, neurons appear capable of adapt-
ing to many statistical properties of the stimulus ensemble,
meaning that response properties can change over time of
exposure to a single ensemble (e.g., Lesica et al. 2007; Sharpee
et al. 2006; Webster et al. 2002, 2006).

A common model for characterizing neural responses to a
given ensemble is the linear—nonlinear (LN) model. In this
model, a neuron’s response is determined in two steps. First,
the stimulus is linearly weighted with the neuron’s spatiotem-
poral filter and this linearly weighted stimulus is summed to
produce a number, the filter output. The firing rate is then given
by an arbitrary static nonlinear function (such as a sigmoidal
function) of the filter output, which we can call the neuron’s
input—output function. Here we compare two commonly used
methods for estimating the spatiotemporal filter when fitting
the LN model to a neuron’s response, which we refer to as the
linear and LN methods. The linear methods give unbiased
answers (meaning answers that are correct in the limit of
infinite data) for an arbitrary stimulus ensemble only for a
neuron whose responses are determined by a linear model, that
is, an LN model with a linear input—output function (cf. Fig. 1).
For an LN model with a nonlinear input—output function, the
linear methods give an unbiased estimate of the filter only if the
stimulus ensemble is uncorrelated or correlated Gaussian noise
(Agtiera y Arcas et al. 2003; Bialek and de Ruyter van
Steveninck 2005; Bussgang 1952; Chichilnisky 2001; de Boer
and Kuyper 1968; Paninski 2003a; Ringach et al. 1997;
Schwartz et al. 2006; Sharpee et al. 2004). LN methods give
unbiased answers for arbitrary stimulus ensembles for neurons
whose responses are determined by an arbitrary LN model.

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

WWW.jn.org

8002 ‘0T aunr uo Bio AbBojoisAyd-ul woly papeojumoq



http://jn.physiology.org

SPATIOTEMPORAL NEURAL FILTERS WITH NATURAL STIMULI

linear model
stimulus

Iinear-nonlinear model
stimulus

E.

Natural stimuli are strongly correlated and non-Gaussian (Field
1987; Ruderman and Bialek 1994; Simoncelli and Olshausen
2001). Thus the static nonlinearity causes bias in the spatio-
temporal filters estimated from natural stimuli by the linear
methods, but not by the LN methods. The more general
conditions under which each method gives biased or unbiased
answers are well known (Paninski 2003a; Sharpee et al. 2004).

The linear methods are often used to estimate filters for
responses to natural stimuli, in spite of the bias they might have
with such stimuli. Presumably this is due to the computational
simplicity of the linear methods compared with the LN meth-
ods, and the belief that the bias is not too great a problem.
Errors in estimation have at least two origins: systematic bias
of the method used, which is independent of data size, and
sampling error, meaning error in the estimation due to the finite
amount of data. For realistic data sizes, it might be that the
sampling error overwhelms the bias, so that the bias would be
an insignificant source of error. Thus it is important to com-
pare, with realistic amounts of data, the performance of the
linear and the LN methods of spatiotemporal filter estimation,
as we do here.

Here we find, using data recorded from simple cells in cat
primary visual cortex (V1), that the spatiotemporal filter com-
puted for natural stimuli in the LN model is, in general,
significantly different from that computed in the linear model.
We show that, although spatiotemporal filters computed in the
LN model change with stimulus statistics, these changes are
exaggerated when the spatiotemporal filters are computed in
the purely linear model. Here, we have compared neural filters
derived from responses to two stimulus sets: white noise and
natural stimuli. Each stimulus set had the same mean lumi-
nance and contrast, but the two stimulus sets had different
power spectra and higher-order statistical correlations. We find
that neural filters computed in the LN model provide a con-
sistently better description of the responses of simple cells in
the primary visual cortex than those computed in the purely
linear model. This was true for predicting responses to novel
stimuli both within the same stimulus set and across different
stimulus sets.
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FIG. 1. Schematic illustration of how the linear and linear—
nonlinear (LN) models describe neural response. In the linear
model, spike probability is proportional to the product of the
stimulus with a receptive field (RF) filter. In the LN model, spike
probability is an arbitrary nonlinear function of such a product.
The first stages of the 2 models, convolution of RF filter with the
stimulus, can be identical, but they differ in the linearity or
nonlinearity of the transformation relating the convolution of RF
filter with the stimulus to the firing rate. With Gaussian inputs,
filters of the LN model can be correctly estimated assuming the
simpler, linear model. However, for natural stimuli, which are
non-Gaussian (Ruderman and Bialek 1994; Simoncelli and
Olshausen 2001), the filter of the linear model will generally
differ from that of the LN model.

stimulus filtered by RF

METHODS
Data collection and stimulus ensembles

All experimental recordings were conducted under a protocol
approved by the University of California, San Francisco on Animal
Research with procedures previously described (Emondi et al. 2004;
Sharpee et al. 2004, 2006). Briefly, spike trains were recorded using
tetrode electrodes from the primary visual cortex of anesthetized adult
cats and manually sorted off-line. After manually estimating the size
and position of the receptive fields, neurons were probed with full-
field moving periodic patterns (gratings). In later off-line analysis,
cells were selected as simple if, under stimulation by a moving
sinusoidal grating with optimal parameters, the ratio of their response
modulation (F1, i.e., amplitude of the Fourier transform of the re-
sponse at the temporal frequency of the grating) to the mean response
(FO) was >1 (Skottun et al. 1991). The rest of the protocol typically
consisted of presenting an interlaced sequence of three different noise
input ensembles of identical statistical properties (only seed values for
the random number generator differed among the three input ensem-
bles) and three different natural input ensembles. Visual stimulus
ensembles of white noise and natural scenes were each 546 s long.
The interval between presentations varied in duration as necessary to
provide adequate animal care. All natural input ensembles were
recorded in a wooded environment with a handheld digital video
camera in similar conditions on the same day (Sharpee et al. 2006).
The noise ensembles were white overall, but each particular frame
was limited to spatial frequencies within a certain band. There were
eight spatial frequency bands total. The intent of such design was to
increase the number of elicited spikes. The mean luminance and
contrast of the noise ensembles were adjusted to match those of the
natural ensembles. Contrast was defined as the SD of luminance
values relative to the mean. Both noise and natural inputs were shown
at 128 X 128 pixel resolution, with angular resolution of about
0.12°/pixel.

Spatiotemporal filters of the linear and LN models

Figure 1 compares the structure of the linear and LN model; each
has a linear filter that is convolved with the stimulus (illustrated are
purely spatial filters, although spatiotemporal filters will be analyzed
for real neurons). The difference between models is that in the LN
model the result of this convolution between stimulus and the linear
filter is transformed by a nonlinear function into spike probability,
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whereas in the linear model only the slope of the transformation can
be adjusted.

To calculate spatiotemporal filters of real neurons, stimuli were
downsampled from 128 X 128 pixels (angular resolution 0.12°/pixel)
to 32 X 32 pixels (angular resolution 0.48°/pixel). All spatiotemporal
receptive field analysis was carried out at this resolution. To find the
center of the receptive field (RF), we computed the spike-triggered
average (STA) stimulus for noise and natural ensembles. To make
analysis computationally feasible and to minimize effects due to
undersampling [we strove to have the number of spikes greater than
the dimensionality of the RFs (Paninski 2003a; Sharpee et al. 2003,
2004)], a patch of 16 X 16 pixels (angular resolution of 0.48°/pixel)
was selected around the maximum in the STA for each ensemble. All
of the filter computations were confined to this patch, which was
identical for noise and natural stimuli on a cell-by-cell basis. In all
cases, subsequent analysis of the filter verified that it was fully
contained within the selected patch.

In the case of white noise stimuli, neural spatiotemporal filters were
computed as STAs (Chichilnisky 2001; de Boer and Kuyper 1968;
Rieke et al. 1997) and as maximally informative dimensions (MIDs)
(Sharpee et al. 2004, 2006). The STA represents the stimulus dimen-
sion along which the mean of the stimuli associated with spikes differs
from the mean of all stimuli. The MID represents the stimulus
dimension that carries the maximal amount of information about the
arrival times of individual spikes. These two analyses should give the
same answer in the case of white Gaussian noise or more generally of
uncorrelated stimuli [by which we mean that each pixel’s luminance
at each time is drawn independently from a single luminance distri-
bution; this is equivalent to the ensemble with mean luminance set to
zero being spherically symmetric (Chichilnisky 2001)], provided only
one stimulus feature is relevant for determining spike probability. This
is because in this case the spatiotemporal filter of the linear model
coincides with that of the LN model with one relevant dimension
(Agiiera y Arcas et al. 2003; Bialek and de Ruyter van Steveninck
2005; Bussgang 1952; Chichilnisky 2001; de Boer and Kuyper 1968;
Paninski 2003a; Ringach et al. 1997; Sharpee et al. 2004). Because
more than one stimulus dimension may be relevant for spikes of real
neurons (Agiiera y Arcas and Fairhall 2003; Bialek and de Ruyter van
Steveninck 2005; Brenner et al. 2000a; de Ruyter van Steveninck and
Bialek 1988; Fairhall et al. 2006; Felsen et al. 2005b; Rust et al. 2005;
Slee et al. 2005; Touryan et al. 2002, 2005), the relevant dimensions
may combine differently to form the dimension along which the mean
changes most and that which is most informative.

In our case, the noise stimulus ensemble was composed of eight
bandlimited Gaussian ensembles that together produced white noise
(within each spatial frequency band, signals were Gaussian and
white). Therefore there were small non-Gaussian effects and devia-
tions from spherical symmetry, although these deviations were un-
likely to affect the argument for the validity of the STA. For conve-
nience, and in anticipation of its role for a natural ensemble, we refer
to the STA as the spatiotemporal filter of the linear model for our
noise inputs. The MID gives the spatiotemporal filter of the LN model
regardless of the statistical properties of the stimulus ensemble (Pan-
inski 2003a; Sharpee 2007; Sharpee et al. 2003, 2004). As we
subsequently show, the differences between STA and MID filters
computed for noise inputs were miniscule or absent.

In the case of natural stimuli, to compute spatiotemporal filters of
the linear or LN model it is necessary to account for stimulus
correlations, both pairwise and higher order. In the LN model, this is
automatically done by the MID method. In the linear model, pairwise
stimulus correlations can be accounted for by multiplying the STA by
the inverse of the stimulus covariance matrix (David et al. 2004;
Felsen et al. 2005b; Machens et al. 2004; Rieke et al. 1997; Ringach
et al. 2002; Sharpee et al. 2004; Smyth et al. 2003; Theunissen et al.
2000, 2001; Touryan et al. 2005; Woolley et al. 2006). We will follow
the common convention and refer to the resulting filter as the decor-
related STA (dSTA).
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The dSTA, and thus the linear model, in principle is the correct
filter for the LN model with an arbitrary nonlinearity if the stimulus
ensemble is a multidimensional Gaussian, but it is biased for corre-
lated non-Gaussian ensembles (Agiiera y Arcas et al. 2003; Ahrens
et al. 2008; Bialek and de Ruyter van Steveninck 2005; Bussgang
1952; Chichilnisky 2001; Christianson et al. 2008; de Boer and
Kuyper 1968; Paninski 2003a; Ringach et al. 1997; Schwartz et al.
2006; Sharpee 2007; Sharpee et al. 2004). By a multidimensional
Gaussian, we mean that the probability of a stimulus s (a vector of
pixel luminances minus the mean luminance) is given by P(s) =
exp(—2s"C ™ 's), where C is the matrix of pixel—pixel covariance. For
a multidimensional Gaussian, any one-dimensional slice through the
distribution also has a Gaussian distribution, including, in particular,
the distribution of luminances for any single pixel. Thus measuring
the degree to which such a one-dimensional slice or the distribution
across all pixels deviates from Gaussian is one measure of the degree
to which the overall distribution deviates from Gaussian. We use this
fact in the piscussioN where we use the kurtosis of the distribution of
luminances at individual pixels across time as one measure of the
deviation of a natural scenes distribution from a Gaussian distribu-
tion.

Because the procedure of inverting the stimulus covariance matrix
tends to amplify sampling noise at the relatively underrepresented
spatial and temporal frequencies, dSTA may not work well in prac-
tice. To correct this, several regularization strategies have been pro-
posed (David et al. 2004; Machens et al. 2004; Smyth et al. 2003;
Theunissen et al. 2000, 2001; Touryan et al. 2005; Woolley et al.
2006). To produce the regularized decorrelated STA filter (RASTA)
we first compute a pseudoinverse of the covariance matrix. Data were
separated into three parts (1/8, 1/8, 3/4). One of the two smaller data
sets was set aside for later use in evaluating the predictive power of
the model. The largest data set was used to compute the STA. To form
the pseudoinverse for a given cutoff value A, we diagonalized the
covariance matrix, finding its eigenvectors and the corresponding
eigenvalues, and then computed the pseudoinverse based on all
eigenvectors that had eigenvalues larger than A (Press et al. 1992;
Woolley et al. 2006). The candidate spatiotemporal filter of the linear
model was then obtained by applying the pseudoinverse to the STA,
and its performance was evaluated on the remaining small data set
(1/8 of the whole data set) by the amount of mutual information it
provided (Adelman et al. 2003; Agiiera y Arcas et al. 2003; Sharpee
et al. 2004). By trying all of the possible cutoff values A, we selected
that value for the cutoff that resulted in the best prediction. The
corresponding filter was the RASTA. Simulations on model cells
(Sharpee 2007) showed that increasing the validation set size to 25%
of the available data resulted in similar relative performance of the
different methods (dASTA, RASTA, MID) as we report here for cortical
cells. Using percentage of explained variance instead of the mutual
information also did not change performance of these methods on
model neurons.

We considered both the dSTA and RdSTA as two alternative
methods for estimating spatiotemporal filters of the linear model in
the case of natural stimuli. Spatiotemporal filters of the LN model
probed with natural stimuli were computed as MIDs (Sharpee et al.
2004, 2006). We note that computing STA, dSTA, and MID filters
required setting aside only one validation data set, whereas com-
puting the RASTA required, in some calculations, setting aside two
validation data sets: one of the data sets was used in selecting the
optimal cutoff on eigenvalues of the covariance matrix that con-
tributed to its pseudoinverse and the other to later evaluate the
predictive power of the linear model based on the RASTA filters.
Computing the regularization without separate data sets for cutoff
selection and validation would artifactually enhance the apparent
predictive power.
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Analysis of receptive field properties

To be able to perform statistical analysis of the properties of
neural spatiotemporal filters, we computed 8 jackknife estimates
for each of the methods and stimulus ensembles (Efron 1998). To
obtain a jackknife estimate, the data were split in the same manner
as described earlier for the validation purposes: a jackknife esti-
mate was made using 7/8 of the data and the predictive power of
the estimate was assessed using the remaining 1/8 of the data. The
8 jackknife estimates were obtained by dividing the data into 8
segments and using each 1/8-long segment as the omitted/valida-
tion segment for one estimate. As described earlier for the case of
RASTA filter estimates, each of the 8 jackknife estimates of
RdSTA filter was obtained by further separating the training part
of the data set (7/8 of the data) into 3/4 and 1/8, of which the latter
small data subset was used to select the optimal cutoff value. The
remaining 1/8 of the data were used to estimate the percentage of
information or variance explained by the given jackknife estimate

Cell 772 1 F1/F0=1.9+ 0.4

ell 694 3 F1/F0=2.5+1.5
o

2499

(Fig. 7). Comparisons between filter estimates (Figs. 2—6) that did
not involve computing predictive power on a novel data set were
based on the RASTA filters computed using 7/8 of the overall data
set to find the STA and 1/8 to find the optimal cutoff A.

To find the preferred orientation and spatial frequency we
performed a one-dimensional Fourier transform in time, selecting
a 2-Hz temporal frequency to match the temporal frequency used
in stimulation with moving gratings. Then, the two-dimensional
(2D) spatial Fourier transform was computed and the position of
the peak was used as an initial guess for the preferred spatial
frequency and orientation of the receptive field. Starting with this
initial guess, the fitting of Gabor functions (Ringach 2002) to the
spatiotemporal filter was always successful. The parameters of
the best-fitting Gabor function were used as the estimate of the
preferred orientation and spatial frequency. Such a procedure was
repeated for each of the jackknife estimates, so that the mean and
SD were obtained [according to jackknife Egq. 7/1.5 in Efron
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FIG. 2. Spatiotemporal filters computed from the linear and the LN models for noise and natural stimuli. Six example simple cells are shown. Filters were
computed with the following methods and stimuli, from rop to bottom: STA and MID for noise ensemble; dSTA, RASTA, and MID for natural ensemble.
Spatiotemporal filters have 3 time frames covering time interval (—133 to —33 ms) before a spike. The color scale shows the filter in units of its average noise
level; scale bars: 1°. To the right of each spatiotemporal filter, we show the corresponding nonlinear gain function — the average firing rate (Hz; y-axis) for a
given value of the filtered stimulus (x-axis; filtered stimulus values are shown relative to their mean and normalized by their SDs). STA, spike-triggered average;
dSTA, decorrelated spike-triggered average; RASTA, regularized decorrelated spike-triggered average; MID, most informative dimension.
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(1998)] for both preferred orientation and spatial frequency values,
as shown in Figs. 3 and 4. Comparisons between parameters of the
neural filters derived from different stimuli and models were
evaluated using linear fits that took into account error bars in both
x- and y-axes, using Mathematica software (Wolfram Research).
Point-by-point comparison between spatiotemporal filters from
different models and stimulus ensembles (cf. Fig. 6) was also done
based on eight jackknife estimates.

Spatial frequency profiles shown in Fig. 5 were obtained by
taking the Fourier transform in time and, with zero-padding to
32 X 32, in space. Linear interpolation between pixels of the 2D
transform was used to derive one-dimensional profiles along the
preferred orientation of each cell. Before averaging across cells,
the frequency profiles of individual cells were normalized to unit
length (sum of squares equal to 1) across all spatial and temporal
frequencies.

T. O. SHARPEE, K. D. MILLER, AND M. P. STRYKER

Generating and evaluating predictions

We used mutual information between the stimulus convolved with
a particular filter and the firing rate as a measure of the filter’s
predictive power (Adelman et al. 2003; Agiiera y Arcas et al. 2003;
Fairhall et al. 2006; Sharpee et al. 2004, 2006). Specifically, mutual
information accounted for by a spatiotemporal filter is computed as

0y

PL(x\spike)}
Pp(x)

I(L)_f dxPy (x|spike) log, [

Here, P,(x) is the probability distribution of the projections x
onto the filter L of all of the presented stimuli. Similarly,
Py (x| spike) is the probability distribution of projections onto the
filter L of all stimuli that lead to a spike. Information along any
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FIG. 3. Absence of change in preferred orientation derived from filters of the linear and LN model, with natural or noise stimuli. Preferred orientation

values were computed by fitting Gabor functions to spatial filters obtained as 2-Hz component of spatiotemporal filters (see METHODS). x- and y-axes:
orientation values are in degrees. The 2-sided length of an error bar shows 1/2 SE. Solid line has a slope of one. Panels in the top row provide comparison
between preferred orientation of the noise STA (y-axis) and that of the remaining 4 filter estimates (x-axis). In panels of the middle row, preferred
orientation from the noise MID filter (y-axis) is compared with those from the other 4 filter estimates (x-axis). Comparison with preferred orientation
values from moving square gratings are shown in the bottom row. From left to right, the x-axis is: the noise MID (top row) or noise STA (middle and
bottom rows); the natural MID; the dSTA for natural stimuli; the RASTA for natural stimuli. Comparison between the preferred orientations of the dSTA
(RASTA) derived from natural stimuli and the preferred orientations of the MID filter also derived from natural stimuli (data not shown) were similar to
the corresponding graphs based on the noise MID filter from the middle row. P values are from paired Wilcoxon test on the equality of x- and

y-values.

J Neurophysiol « VOL 99 «+ MAY 2008 « WWW.jn.org

8002 ‘0T aunr uo Bio AbBojoisAyd-ul woly papeojumoq



http://jn.physiology.org

SPATIOTEMPORAL NEURAL FILTERS WITH NATURAL STIMULI 2501
14 1.4 1.4 1.4 14
R%=0.65 7 R?=0.53 Y R?=0.0001 R%=0.006 | R?=0.15 y
<C 19} m=0.96£0.02 J 1o | M=1.08+0.04 7 1ol M=0.83£0.05 71 o} m=0-5620.07 1ol M=1.09:006
}(7) 7 / / ’ : /
o / —0—
(oY —O0—
(0] —0 - o
@D o6 S 06 06 7% 056 06}
o
c <
o
0.2 0.2 0.2 —O— L
/ ===y | 02 02
é o o — %
0.2 0.6 1.0 14 02 06 1.0 14 02 06 1.0 14 0. 0.6 1.0 14 0.2 06 1.0 14
. 14 14 14 14
noise MID R%=0.544 yz R220.02 R2=0.008 R2=0.1
m=1.20£005 / m=1.02+0.07 m=0.7+0.2 m=1.01+0.1
Q12 o 1.0 —3 10 A 10 N
= 0o —0—
) = —0] o —o0—,
Los 06 06 s 0.6
e L
oo ° 50— l:-;-
0.2 ¢ 0.2 _ﬁo— 0.2 —To— 0.2 +
%«
0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
natural MID 14 14 14
R?=0.014 R?=0.0001 R%=0.13
O 1.0f m=0.80+0.06 71 10} m=0.70.2 10} mM=0.8+0.1 s
= . P
= % g .
T ~
Cos —0— 0.6 e 0.6
= 2 .
c L] o)
.2 ~4{ 0.2
02y 2 . 7 o2r 2
0.2 0.6 1.0 14 0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
dSTA 1.4 14
7
< 1.0 1.0
|_
(%]
ko)
0.6 0.6 —O0—
2
R*=0.1 R?=0.01
0.2 0.2
m=1.0£0.1 O. M=1.02£0.2
0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
RdSTA 14
< 10 s
E e
2 s
¥ os e
R?=0.004
0.2
m=0.8+0.4
02 06 10 T4
gratings

FIG. 4. Comparison of preferred spatial frequency derived from noise and natural spatiotemporal filters and gratings responses. Plots are arranged as a top
half of a 6 X 6 matrix, because there are 5 filter estimates in total and one measurement from gratings. Each row has the same data set on the x-axis and each
column has the same data set on the y-axis. From top to bottom, data sets on the y-axis represent spatial frequency values derived from the STA for noise stimuli,
the MID for noise stimuli, the MID for natural stimuli, the dSTA for natural stimuli, the RASTA for natural stimuli, and the value derived from moving sinusoidal
gratings. The data sets on the x-axis follow the same order from left to right. Spatial frequency values are given in cycles/degree. Each point represents a separate
cell (n = 40 points). The 2-sided length of the error bar around each data point is 1/2 SE. Solid line has a slope of one; dashed line shows the best fit taking
into account error bars. The values for the best-fitting slope are given in each plot, with their SDs. R values for variance explained by a linear relationship are

also given within each plot.

stimulus dimension, including the relevant spatiotemporal filter,
may not exceed the overall information carried in the times of
occurrence of single spikes. This overall information can be

evaluated as (Brenner et al. 2000b)

I

where 7(f) is the firing rate over multiple repetitions of a single

spike =

1 t t
at " 1o, ™
r

stimulus segment that is characteristic of the stimulus ensemble of
interest and 7 is the mean firing rate. The ratio /(L)/I

can be used

spike

to measure predictive power. Neural responses to 50-150 repetitions

of an approximately 11-s-long segment of the natural or noise ensem-
ble were used to compute I ,;..

2

In addition to mutual information, we also computed variance
accounted for by a given spatiotemporal filter together with the

nonlinear transformation from filter outputs to spike probability. This
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FIG. 5. Population average of amplitude
spectra of spatiotemporal filters along their
preferred orientation. Filters were derived
from neural responses to natural stimuli.
Analysis based on the MID filters is shown in
blue, analysis for the dSTA filters is shown in
red, and analysis for the RASTA filter is
shown in orange. Gray error bars show am-
plitude spectra for noise MID filters, with a
polynomial fit as a gray solid line (Sharpee
et al. 2006). A: spatial frequency profiles at

05} 0.5¢ zero temporal frequency, f = 0 Hz. B: spatial
S frequency profiles for temporal frequency f =
MID °o, %000 10 Hz. Error bars show SEs. Amplitude spec-
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recorded sequence of spikes and then computing the predicted amount
of variation based on the reconstructed LN model. The two steps can
be combined into one equation (Paninski 2003a; Sharpee 2007),
which gives the predicted variance normalized by 7
. 2
v = [ PSR @)
Py(x)

This equation is similar to Eq. I for the mutual information and relies
on the same probability distributions. Variance accounted by a given
LN model cannot be larger than the overall variance in the firing rate

1 OIR 3
Viax = TJ dt[;i| 1 €3]

As was pointed out by Sahani and Linden (2003) and Machens et al.
(2004), both the variance in the firing rate and variance accounted by
a given LN model have to be corrected for the positive bias due to
finite size of the data set to determine the amount of explainable
variance. Procedures for correcting for this bias are described next.

To avoid overestimation in predictive power due to overfitting,
mutual information and explained variance were computed using the
remaining 1/8 of the data set not used to derive the spatiotemporal
filters themselves (this data set was also not used to select the optimal
cutoff for RASTA filters, as described earlier). Mutual information
values are positively biased (Brenner et al. 2000b; Paninski 2003b;
Strong et al. 1998; Treves and Panzeri 1995). Similar effects happen
for variance (Machens et al. 2004; Sahani and Linden 2003). To
correct for this bias, we extrapolated the relationship between mutual
information (variance) and the inverse of the data set size to the
infinite data limit using linear extrapolation based on 80, 85, 90, 95,
and 100% of the data from the test set. This procedure was carried out for
each jackknife estimate, model, and type of stimulus, as well for the total
value of information /,,;;, between unfiltered stimuli and spikes.

We note that the measures of predictive power we are using—the
mutual information between filtered stimuli and spikes and the vari-
ance in the firing rate by the LN model based on a given spatiotem-
poral filter—reflect the predictive power based on the best possible
nonlinear transformation between filtered stimuli and the spike prob-
ability. In other words, the percentage of the information (variance)
explained quantifies the best predictive power achievable by a given
spatiotemporal filter and arbitrary nonlinearities. Thus although an LN
model is more powerful than a linear model by virtue of its nonlinear
input—output function, this is not the cause of lower predictive power
of the spatiotemporal filters computed in the linear model. Instead, our
method assays how accurate a filter a given model (linear or LN) can
produce, with an understanding that the predictive power will be
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compared taking nonlinear gain functions into account even for
spatiotemporal filters computed using the linear model.

RESULTS

We computed the spatiotemporal filters of simple cells
probed with natural and noise stimuli according to the assump-
tions of the linear and LN models. Our goal was to compare
how the spatiotemporal filters computed using the linear and
LN model changed with the stimulus ensemble. The analysis is
based on 40 simple cells in the primary visual cortex recorded
in four animals. Spatiotemporal filters of the linear model were
estimated as the spike-triggered average (STA) stimulus in the
case of white noise stimuli and as the decorrelated STA
(dSTA) or its regularized version (RASTA) for natural stimuli
(see METHODS). Spatiotemporal filters of the LN model were
estimated as the most informative dimension (MID). In Fig. 2,
we show spatiotemporal filters computed according to the
linear and LN models for six example simple cells. In agree-
ment with previous findings (David et al. 2004; Felsen et al.
2005b; Sharpee et al. 2006; Smyth et al. 2003), we observed
that the various filter estimates were qualitatively similar to
each other, even when computed from different stimulus en-
sembles. This was evident in the overall spatial extent of the
filters and in the variation of their peak amplitudes in time. For
each spatiotemporal filter, we also show the best nonlinearity
that relates stimuli convolved with the filter to the neural firing
rate, which is given by associating each filter output value with
the mean evoked firing rate averaged over all stimuli having
that filter output value.

Orientation selectivity

To compare the spatiotemporal filters quantitatively, we
begin by examining preferred orientation values associated
with different filters (cf. Fig. 3). We found no significant
differences in preferred orientation between the STA and MID
filters for white noise stimuli (R> = 0.96). This is to be
expected because for white Gaussian inputs, the STA provides
the filter of both the linear and the LN models and non-
Gaussian effects in the white noise stimulus ensemble were
small. The STA and MID filters should therefore coincide,
unless multiple relevant dimensions are present and contribute
differently to these filters (see METHODS). Importantly, we found
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no significant differences between the preferred orientations of
MID filters obtained from neural responses to natural stimuli
and those of either the MID filter (R> = 0.92; P = 0.46, paired
Wilcoxon test) or the STA filter (R2 = 0.90; P = 0.77, paired
Wilcoxon test) obtained from neural responses to the noise
ensemble. The preferred orientations of filters computed as the
dSTA for natural stimuli were much less correlated with, and
differed significantly (P < 0.01, paired Wilcoxon test) from,
those derived from noise stimuli using either the STA or the
MID filters for noise stimuli, with R* = 0.18 and 0.20,
respectively. Regularizing the linear filter for natural stimuli
(RASTA) did not produce much improvement, resulting in
correlations R = 0.29 and 0.28 with the white noise STA or
MID filters, respectively. The differences in orientation values
derived from the RASTA and either the white noise STA or
MID remained significant (P < 0.01, paired Wilcoxon test).
Thus the filters produced by the LN model, but not the linear
model, from neural responses to natural stimuli produce similar
preferred orientations to filters produced by either model from
neural responses to noise stimuli.

Similar results are found when comparing preferred orien-
tations computed from neural filters to those determined by
neural responses to moving square gratings (Fig. 3). The filters
produced by the LN model in response to natural stimuli and
those produced by either model in response to noise stimuli
showed no significant difference in preferred orientation from
the orientations determined from studies with gratings, in
agreement with previous studies (Smyth et al. 2003; Usrey
et al. 2003). However, the correlation values are smaller than
for comparisons between different filters (noise STA: R* =
0.29, P = 0.3, paired Wilcoxon test; noise MID: R> = 0.24,
P = 0.3, paired Wilcoxon test, not shown in Fig. 3; natural
MID, R?> = 0.30, P = 0.12, paired Wilcoxon test). We also
note that although estimates of the preferred orientation from
gratings and the noise STA agree well for 90% of the cells, the
four cells that exhibited a large disparity between the two
estimates had either a firing rate or a preferred spatial fre-
quency within the lowest 10% of the population.

In contrast to the performance of filters derived from re-
sponses to noise stimuli or from the LN model in response to
natural stimuli, the filters produced by the linear model in
response to natural stimuli resulted in preferred orientations
that were significantly different from those determined by
responses to gratings (dSTA: R* = 0.19, P = 0.002, paired
Wilcoxon test; RASTA: R? = 0.24, P = 0.005, paired Wil-
coxon test).

Preferred spatial frequency

Next, we examined differences in preferred spatial fre-
quency values (cf. Fig. 4). Altogether there are six estimates of
preferred spatial frequency: one value derived from neural
responses to moving gratings and five values derived from five
different filter estimates for each neuron. The five filter esti-
mates include two for noise stimuli (STA, MID) and three for
natural stimuli (dSTA, RASTA, MID). We present our results
as the upper half of a 6 X 6 matrix of pairwise comparisons.
Each row has the same data set on the y-axis and each column
has the same data set on the x-axis. Preferred spatial frequency
for the two filter estimates derived from neural responses to
white noise (STA and MID) were strongly correlated, with
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R* = 0.65 and the value for the best-fitting slope 1.03 * 0.02
(SD). By comparing filters derived from noise and natural
stimuli, we found that preferred spatial frequencies of filters
derived from noise inputs were slightly, but statistically sig-
nificantly, higher than those of filters derived from natural
inputs with the LN model. The slope of the best-fitting line
(taking into account error bars) was 1.20 = 0.05 when the
noise MID filter was compared with the natural MID filter and
1.09 £ 0.04 when the noise STA filter was compared with the
natural MID filter. Measurements derived from neural re-
sponses to gratings were not significantly different from those
based on the noise MID, somewhat smaller than those based on
the noise STA (best-fitting slope of 1.09 £ 0.06), and larger
than those based on the natural MID (best-fitting slope of 0.8 =
0.1). Filters derived from natural inputs under the linear model
(dSTA or RASTA) had preferred spatial frequencies that were
poorly correlated with those derived from either of the two
noise filters, from the MID filters for natural stimuli, or from
neural responses to moving gratings (all R> <0.03). We also
note that error bars on the preferred spatial frequency values
were substantially larger for filters derived from natural inputs
under the linear model than for filters derived from natural
inputs under the LN model or filters derived from noise inputs.

Spatial frequency profiles

Having found no changes in the preferred orientation be-
tween noise and natural stimuli and some change in the
preferred spatial frequency, we proceeded to examine differ-
ences in the frequency composition of the spatiotemporal
filters, measured at the preferred orientation (see METHODS).
Previous results (Sharpee et al. 2006) showed that spatial
frequency profiles can change profoundly between noise and
natural inputs (when estimated as MID filters), without large
changes in the preferred spatial frequency values. In Fig. 5 we
show the relative frequency composition, averaged across our
population of cells, for the three different methods (dSTA,
RdASTA, and MID) of estimating spatiotemporal filters with
natural stimuli. Even though the dSTA filters are known to be
subject to noise amplification, their spatial frequency profiles
(shown in red) at low spatial frequency closely resemble the
behavior of the MID filters (shown in blue). Some noise
amplification does indeed take place at higher spatial frequen-
cies around 1 cycle/degree, and this is more pronounced at the
larger temporal frequency f = 10 Hz than at the low temporal
frequency f = 0 Hz. A common strategy to deal with the
problem of noise amplification at higher spatial frequency is to
impose a smoothness constraint, which effectively filters out
higher spatial frequencies where signal-to-noise ratio is low.
The RASTA is an example of this strategy. In agreement with
previous reports (David et al. 2004; Felsen et al. 2005b; Smyth
et al. 2003; Theunissen et al. 2000, 2001; Woolley et al. 2006),
spatial frequency profiles of the RASTA filters (shown in
orange) were strongly biased toward low spatial frequencies
and, to some extent, to low temporal frequencies.

Thus not only do the three methods of estimating filters with
natural stimuli produce spatial frequency profiles that are
profoundly different, but also different implementations of the
linear model (dSTA and RASTA) profoundly differ from each
other. For comparison, we replot spatial frequency profiles
from the noise MID filters in gray solid line (Sharpee et al.
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2006). Most notably, for zero temporal frequency, the differ-
ences in spatial frequency composition between the dSTA and
the RASTA profiles far exceeded the differences between
spatial profiles computed for noise and natural stimuli using the
LN model (the MIDs). At low spatial frequencies, the RASTA
shows higher-amplitude spectra than both noise and natural
MIDs, whereas the dSTA shows smaller-amplitude spectra
than both noise and natural MIDs (although it is close to the
frequency composition of the natural MID filters). At higher
spatial frequencies, the situation is the reverse. Here, for both
0- and 10-Hz temporal frequencies, the RASTA shows less
high-frequency content than MID filters computed for noise
and natural stimuli, whereas the dSTA overestimates the fre-
quency content.

The frequency compositions of the MID filters computed for
natural and noise stimuli are approximately identical at higher
spatial frequencies. This can be viewed as providing additional
support for the computation underlying the LN model because,
in the absence of an external smoothness constraint, as in the
case of computing the RASTA, artifacts would tend to accu-
mulate at the higher spatial frequencies, which have much less
power than low frequencies in natural stimuli and hence are
relatively undersampled.

Similarity of spatiotemporal filters according to
correlation coefficients

The previous section showed the much greater reliability of
the MID method compared with the various STA methods for
measuring spatial frequency selectivity from natural stimuli.
Describing the relative sensitivity to different spatial frequen-
cies is an important characterization of neural filters. However,
the spatiotemporal filters may also be compared point by point,
using correlation coefficients between pairs of filters. We will
use the spatiotemporal filters computed for noise stimuli,
where the different methods agree, as a reference. On discreti-
zation in time and two spatial coordinates, as is necessary for
any practical computations, the spatiotemporal filter becomes a
multidimensional vector in the stimulus space, where each
pixel is a separate dimension (in our case, the dimensionality is
16 X 16 X 3;i.e., 16 X 16 spatial sampling and 3 time lags).
Therefore it is only natural to measure the similarity of two
filters as a normalized dot product between them, that is, as a
correlation coefficient (CC). Two identical filters have a CC of
1; very dissimilar filters will have a CC of 0. Although there is
only one way for the CC between two filters to be 1 (i.e., when
they are identical), there are many filters that describe dimen-
sions that are orthogonal to each other and therefore have CC
values of 0. We note that the sign of the spatiotemporal filter
can always be changed to the opposite if accompanied by a
simultaneous inversion of the x-axis on the nonlinear gain
functions (shown in Fig. 2). For example, a filter with large
positive peak together with increasing firing rate with increas-
ing stimulus similarity to the filter is equivalent to a contrast-
inverted filter having a negative peak together with firing rate
that decreases with stimulus similarity. This means that the
sign of the correlation between two filters is not meaningful, so
the correlations can be taken to always be nonnegative.

The results of such an analysis are given in Fig. 6. We first
compare similarity between spatiotemporal filters of the LN
model computed for noise versus natural stimuli (as MID

T. O. SHARPEE, K. D. MILLER, AND M. P. STRYKER

filters) to the similarity of the filters of the linear model
computed for noise stimuli (STA) versus natural stimuli
(dSTA). As can be seen in Fig. 6A, for all cells, the spatiotem-
poral filters of the LN model were more similar to each other
across stimulus type than filters of the linear model. This was
also true if filters computed for the natural stimuli in the linear
model were regularized (Fig. 6B). Because non-Gaussian ef-
fects in the white noise stimulus ensemble were small, the STA
for noise stimuli also approximates the filter of the LN model
and, to that extent, is interchangeable with the noise MID filter.
In Fig. 6, C and D, we use the noise MID filter instead of the
noise STA filter to quantify changes in filters between noise
and natural stimuli. Here the only difference between x- and
y-axes is in the method for computing filters for natural stimuli.
In Fig. 6C we show that for all cells the noise MID filter is
closer to the natural MID filter than to the dSTA filter com-
puted for natural stimuli. In Fig. 6D this comparison is carried
out between the natural MID filter and the RASTA. Although
there is more variability associated with the RASTA filters, for
most of the cells (37 of 40), the noise MID filter is still closer
to the natural MID filter than to the RASTA filter computed for
natural stimuli.

Similarity between spatiotemporal filters obtained with
noise and natural stimuli was correlated with both similarity of
the corresponding nonlinear gain functions (Fig. 6F) and the
average of the predictive power of the natural MID filter in
predicting responses to a novel natural stimulus segment and
that of the noise MID filter in predicting responses to a novel
noise stimulus segment (Fig. 6F). On average there was greater
similarity between nonlinear gain functions than between the
spatiotemporal filters because all but 7 of 40 cells are above the
unity line in Fig. 6E.

To summarize this section, among the three methods of
estimating spatiotemporal filters with natural stimuli, the MID
method produces filters that are by far the closest to the noise
filters. Thus spatiotemporal filters of the LN model appear to
be more stable under changes between white noise and natural
stimuli than do receptive fields of the linear model.

Predictive power of the linear and LN models

A final criterion for comparing different estimates of spa-
tiotemporal filters is their predictive value. How accurately do
filters associated with linear and LN models predict the re-
sponse to novel stimuli, which were not used to compute the
receptive field? Note that, in all cases, we are studying the
predictive power of an LN model using the given filter, with
the nonlinearity chosen to be optimal for the given filter as
described previously. The only difference is how the filter was
computed, in particular, whether the nonlinearity was taken
into account in computing the filter.

In Fig. 7. we show an example of spike responses to 110
repetitions of the same segment from the natural stimulus
ensemble (Fig. 7A) Figure 7, B and C illustrates comparison
between the average firing rate (black line) and its predictions
according to the differently reconstructed spatiotemporal filters
and nonlinearities (spatiotemporal filters and nonlinearities for
this cell are shown in the middle column, bottom row of Fig. 1).
The data from this segment of the natural stimulus were not
used in estimating either the filters or the associated non-
linearities. Comparison between actual firing rate and our
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FIG. 6. Correlation between spatiotem-
poral filters of the linear and LN models with
- noise and natural stimuli. Similarity between
2 spatiotemporal filters is quantified by their
correlation coefficient (CC, or normalized
— dot product). For all cells, stimuli, and meth-
ods for estimating filters, the filter dimen-
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predictions based on the natural MID filter and the correspond-
ing nonlinearity (purple, shown inverted for clarity) is shown
in Fig. 7B. Although the reconstruction has difficulty predict-
ing very high peaks in the firing rate, more moderate peaks
=30 Hz, as well as the timing of the peaks, can be fairly well
reconstructed. In Fig. 7C we show an expanded view of the
actual firing rates and predictions based on three different
filters (MID, dSTA, and RdSTA) and their corresponding
nonlinearities.

To quantify the average predictive power, we consider both
percentage of explained variance and information, determined
as a ratio between variance (information) accounted for by a
given filter with the best possible nonlinearity, and the explain-

0.5 1.0

cc(noise MID; natural MID)

able variance (information) in neural response. To determine
the explainable variance, previous studies have indicated that
filters derived from natural stimuli predict responses to natural
stimuli better than responses to noise (Sharpee et al. 2006;
Woolley et al. 2006) or gratings (David et al. 2004); and, vice
versa, filters derived from noise stimuli predict responses to
noise better than responses to natural stimuli (Sharpee et al.
2006; Woolley et al. 2006). Therefore we concentrate here on
comparing estimates of the power of various filters derived
from natural stimuli (MID, dSTA, and RASTA) for predicting
responses to either natural or noise stimuli. In the case of
natural stimuli, spikes to be predicted were taken from a novel
part of the natural stimulus ensemble that was not used for
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computing the filters or nonlinearities. Predictions for noise
stimuli were made for a noise stimulus segment of the same
duration as the novel natural stimulus segment.

We found the expected large decrease in predictive power
from natural to noise stimuli (Fig. 7D). Beyond that, the MID
filters computed from natural stimuli provide better predictions
than either the dSTA or the RASTA computed from natural
stimuli. This was true for predictions of responses to both
natural and noise stimuli, using either percentage of informa-
tion or variance to measure predictive power. In the top part of
Fig. 7D, we show the percentage of the overall mutual infor-
mation, /., between the entire stimulus and spike trains that
was explained by LN models with filters obtained by the
different methods. The bottom half of Fig. 7D provides anal-
ogous comparisons in terms of the percentage of variance
explained. Procedures for determining explainable variance
(Machens et al. 2004; Sahani and Linden 2003) are described
in METHODS. Both ratios allow one to infer quantitatively how
much predictions could potentially improve if the model were
expanded to incorporate neuronal sensitivity to more than one
stimulus dimension (Agiiera y Arcas and Fairhall 2003; Bialek
and de Ruyter van Steveninck 2005; Brenner et al. 2000a;
de Ruyter van Steveninck and Bialek 1988; Fairhall et al. 2006;
Felsen et al. 2005b; Rust et al. 2005; Slee et al. 2005; Touryan
et al. 2002, 2005). However, information may be the more
appropriate measurement with natural stimuli because of their
non-Gaussian properties. We note that measurement of [, or
the overall variance was available only for n = 32 neurons in
our data set for which a segment of stimulus was repeated a
sufficient number of times (>50).

On average, the MID filters derived from natural stimuli
accounted for 35 = 3% (SE) of I,;,. Compared with other
filter estimates, the MID filters provided significantly better
predictions of neural responses to natural stimuli than either the
dSTA (P < 10~*, comparison between percentages of ex-
plained information; P < 0.001, comparison between percent-
ages of explained variance) or the RASTA (P < 10~ *, com-
parison between percentages of explained information; P =
0.01, comparison between percentages of explained variance).
The two-tail paired Wilcoxon test was used for all compari-
sons. The same effect was observed (cf. Fig. 7) for predictions
of responses to noise stimuli (P < 10~ for comparisons with
either the dSTA or the RASTA in terms of percentages of
explained information, and P < 0.002 for comparisons be-

FIG. 7. Predictive power of the LN models using spatiotemporal filters
derived under either the linear or LN models from natural stimuli. A: responses
of a simple cell from primary visual cortex to repeated presentations of the
same segment of natural scene. Red box delineates the time interval for which
we provide an expanded view in C. B: comparison of the actual firing rate
(black) with predictions based on the natural MID filter and the corresponding
nonlinearity (purple, shown inverted for clarity). C: expanded view of com-
parison between the actual firing rates and our predictions based on the dSTA
(blue), RASTA (green), and MID (purple) filters together with their corre-
sponding nonlinearities (all shown for this cell in the middle column, bottom
row of Fig. 1). D: predictions for spikes elicited by natural stimuli are grouped
to the left, whereas predictions for spikes elicited by noise stimuli are grouped
to the right. Predictions based on the MID filters are shown with white bars,
those based on the dSTA are shown in black, and those based on the RASTA
are shown in gray. Top: average predictions as a percentage of the overall
information explained by LN models with the different filters and the best
possible nonlinearities for these filters. Bottom: analogous comparisons using
the percentage of variance explained by the LN models based on the same 3
different filters and nonlinearities. Error bars show SEs.
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tween percentages of explained variance using either the dSTA
or the RASTA).

The same results were also obtained using a larger fraction
of the data (1/4 instead of 1/8) as the test data set for computing
jackknife estimates for each kind of a filter. In this case, the
MID filters derived from natural stimuli accounted for 31 *
3.6% (SE) of I,;, when predicting neural responses to a novel
set of natural stimuli, which was significantly better than
predictions based on the RASTA (26.6 = 3.5%, P = 0.015) and
those based on the dSTA (11 * 1.6%, P < 1074). Similarly,
predictions of neural responses to noise stimuli using the MID
filters derived from natural stimuli accounted for 18.09 * 3.3%
and were significantly better (P < 10~ %) than the correspond-
ing predictions based on the RASTA filters derived from
natural stimuli (5.3 = 1.0%) or the dSTA (4.2 = 1.3%).

DISCUSSION
Stability of the LN model

Although characterizing neural processing in the natural
setting remains one of the ultimate goals of sensory neuro-
science, considerable technical difficulties exist for correctly
estimating neural receptive fields from natural stimuli (Panin-
ski 2003a; Rust and Movshon 2005; Sharpee et al. 2003, 2004).
Here we have examined in detail two models for computing
spatiotemporal filters: the linear model and the LN model.
With noise inputs, there was very little difference, if any,
between the spatiotemporal filters of the two models. This is as
expected theoretically for white Gaussian or other uncorrelated
(spherically symmetric) stimuli (Chichilnisky 2001; de Boer
and Kuyper 1968; Paninski 2003a; Rieke et al. 1997; Sharpee
et al. 2004). In contrast, spatiotemporal filters of the linear and
the LN models computed with natural stimuli can be pro-
foundly different (Fig. 5). Despite the added complexity in the
LN model, it produces spatiotemporal filters that are more
stable under changes in the stimulus statistics between noise
and natural inputs (Fig. 6). Spatiotemporal filters obtained
using the LN model also better predicted spikes elicited by a
novel segment of either noise or natural stimuli (Fig. 7), even
though predictions based on the spatiotemporal filters com-
puted using the linear model also took into account the best
possible nonlinearity for those filters.

The two standard methods of computing spatiotemporal
filters of the linear model with natural stimuli have their
limitations. As pointed out previously (David et al. 2004;
Smyth et al. 2003; Theunissen et al. 2000, 2001; Touryan et al.
2005; Woolley et al. 2006), computing the spatiotemporal filter
as the dSTA tends to amplify noise at spatial and temporal
frequencies that are relatively undersampled. For natural stim-
uli, this noise amplification happens at higher temporal and
spatial frequencies. In agreement with previous results (David
et al. 2004; Smyth et al. 2003; Theunissen et al. 2000, 2001;
Touryan et al. 2005), we show here that introducing smooth-
ness constraints and regularization leads to greater predictive
power of the RASTA spatiotemporal filter compared with that
of the dSTA. In some cases, however, the RASTA can produce
spatiotemporal filters that substantially overestimate the con-
tribution of low-frequency components (Fig. 5) to neural fil-
tering. In this respect, spatiotemporal filters of the LN model
computed as the MID seem to find the middle ground: at low
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spatial and temporal frequencies they are similar to the dSTA
filters, whereas at higher spatial frequencies their amplitude
spectra are intermediate between those of the dSTA and
RdASTA filters. At these higher spatial frequencies the MID
filters computed for natural and noise stimuli had identical
amplitude spectra, which provided additional support for the
computations of the LN model.

Theoretical arguments indicate that advantages of comput-
ing the MID filters compared with the RASTA filters should
increase with increasing deviations of the stimulus ensemble
from the correlated Gaussian distribution (Ringach et al. 1997;
Sharpee et al. 2004) or when the neural noise level decreases
(Sharpee 2007). One measure of the deviation from a Gaussian
ensemble is the kurtosis of the distribution of light intensity
values of individual pixels, which is zero for a Gaussian
distribution but positive for distributions that are more heavy-
tailed than Gaussian. The natural stimulus ensemble used in
this study had a mean kurtosis value across pixels of about 0.4
(range from 0.19 to 0.64) measured for the distribution of light
intensity at single pixels across approximately 50,000 frames.
By comparison, one can expect to find kurtosis values <0.04
for a sequence of the same size taken from the uncorrelated
Gaussian distribution (Press et al. 1992). Our kurtosis mea-
surement is consistent with previous studies of the statistics of
natural stimuli where kurtosis values with a mean of about 2
(range 0.2-22) were obtained after correcting for finite-size
effects (Thomson 1999). Therefore although our stimulus en-
semble is non-Gaussian, typical natural stimulus ensembles are
even more strongly non-Gaussian by this measure.

Overall, these findings suggest that stimulus-dependent
changes in neural spatiotemporal filters are better characterized
by the LN model compared with the linear model. For exam-
ple, both the dSTA and RASTA filters computed for natural
stimuli show changes in tuning across spatial and temporal
frequencies relative to white noise filters, although these
changes are generally of opposite sign for the dSTA versus the
RASTA. A point-by-point comparison between spatiotemporal
filters, as quantified by the correlation coefficient, also shows
that spatiotemporal filters of the linear model differed much
more between noise and natural stimuli than did the spatiotem-
poral filters of the LN model.

Extensions of the LN model

The LN model considered here can be extended to account
for multiple relevant stimulus features (Agiiera y Arcas et al.
2003; Bialek and de Ruyter van Steveninck 2005; Brenner
et al. 2000a; de Ruyter van Steveninck and Bialek 1988;
Fairhall et al. 2006; Felsen et al. 2005b; Rust et al. 2005; Slee
et al. 2005; Touryan et al. 2002, 2005). Our best predictions
using the LN model with a single spatiotemporal filter ac-
counted for about 40% of the overall information contained in
the stimulus about the arrival times of single spikes, /.
Including additional dimensions has the potential to increase
the percentage of /,;, explained by the model. David et al.
(2004) used a model based on two linear filters passed through
threshold-linear functions to account for 50% of the variance of
responses in monkey V1 cells. Another possible extension is to
account for spike history effects, in which the probability of a
spike is influenced by prior spikes independent of visual
stimulus (Paninski et al. 2004; Pillow et al. 2005).

J Neurophysiol « VOL 99 « MAY 2008 « WWW.jn.org

8002 ‘0T aunr uo Bio AbBojoisAyd-ul woly papeojumoq



http://jn.physiology.org

2508

In any case, it is helpful to use Shannon mutual information
as a measure of predictive power, particularly in the setting of
natural (non-Gaussian) stimuli, because it measures the degree
to which model output accounts for neural response indepen-
dently of the statistical distributions of these variables. For any
distributions, it tells the number of bits of information given,
on average, by the model output about the neural response.
Although the percentage of variance explained provides an
intuitive measure of the size of the error relative to the size of
the response, it might not reflect deviations in accounting for
the higher-than-second-order moments of the response.

Stimulus-dependent changes in neural spatiotemporal filters
have been observed in several sensory modalities, including au-
ditory (Theunissen and Shaevitz 2006; Theunissen et al. 2000,
2001; Woolley et al. 2006), visual (Chander and Chichilnisky
2001; David et al. 2004; Felsen et al. 2005a,b; Hosoya et al.
2005; Sharpee et al. 2006; Smirnakis et al. 1997), and somato-
sensory (Maravall et al. 2007). It is intriguing that such
stimulus-dependent effects increase precision of temporal cod-
ing and are tuned to emphasize the most informative features of
natural sounds (Theunissen and Shaevitz 2006; Woolley et al.
2005, 2006). In this respect, such stimulus-dependent tuning of
auditory neurons is reminiscent of how visual neurons adapt
their filtering properties to match the statistics of stimuli
(Hosoya et al. 2005; Sharpee et al. 2006; Smirnakis et al.
1997), suggesting that there may be general principles for
sensory processing common to different modalities. It will be
interesting to know whether taking into account nonlinear
transformations between stimuli and spike probabilities when
estimating the neural spatiotemporal filter will similarly im-
prove our models of neural coding in other stages of visual
processing and sensory modalities, as it does for simple cells in
the primary visual cortex.
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