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Induced pluripotent stem cells (iPSCs) are created by the reprogramming of somatic cells via overexpression of certain transcription factors,
such as the originally described Yamanaka factors: Oct4, Sox2, Klf4, and c-Myc (OSKM). Here we discuss recent advancements in iPSC
reprogramming and introduce mathematical approaches to help map the landscape between cell states during reprogramming. Our mode-
lization indicates that OSKM expression diminishes and/or changes potential barriers between cell states and that epigenetic remodeling
facilitate these transitions. From a practical perspective, the modeling approaches outlined here allow us to predict the time necessary to
create a given number of iPSC colonies or the number of reprogrammed cells generated in a given time. Additional investigations will help to
further refine modeling strategies, rendering them applicable toward the study of the development and stability of cancer cells or even other
reprogramming processes such as lineage conversion. Ultimately, a quantitative understanding of cell state transitions might facilitate the
establishment of regenerative medicine strategies and enhance the translation of reprogramming technologies into the clinic.
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In a landmark representation of cell differ-
entiation, Waddington depicted a develop-
mental landscape where pluripotent cells
were positioned at the top of a hill pro-
gressively losing differentiation potential
while going downhill into different valleys
representing irreversible differentiated states
(1). This metaphor implied the presence of
two different types of barriers. On one hand,
barriers that separate stable adjacent differen-
tiated cell lineages and on the other hand the
existence of a vertical hierarchy of barriers
separating the different transient progenitor
states from stable differentiated cells., Differ-
entiated cells at the bottom of the hill would
represent an energetically favored state, as
cells would tend to “fall down” during differ-
entiation, whereas reversion to pluripotency
would imply the need for energy expendi-
ture to overcome barriers. Although the
Waddington landscape lacked a rigorous quan-
tization, it resonated intuitively because it
provided a framework for understanding why
some cell states are stable, whereas some
others, the progenitor states, transit toward
more differentiated stable states. Additionally,
the Waddington landscape allowed for the
modeling of a complex network of molecular
barriers governing cell fate transitions. In
practice, the number of possible molecular
barriers is large, and the term is used to de-
scribe nearly any intracellular factor that mit-
igates or impedes cellular reprogramming. In
the Waddington model (1), however, the
complexities of these molecular barriers are
reduced into an effective energy landscape,

and cell transitions are represented as flows
from one energy state to another.
In 2006, Takahashi and Yamanaka dem-

onstrated that differentiated cells could be
induced back to pluripotency [induced plu-
ripotent stem cells (iPSCs)] by a specific set
of transcription factors, including OCT4/
POU class 5 homeobox 1 (POU5F1), sex
determining region Y (SRY) box 2 (SOX2),
KLF4, and c-MYC (OSKM; the so-called
Yamanaka factors) (2, 3). These experi-
ments demonstrated that differentiated
cell identity was not a fixed and irrevers-
ible state and that somatic cells could be
experimentally reverted to a pluripotent state.
By analogy with developmental processes,
reprogramming to pluripotency can be inter-
preted as cells being pushed back uphill in
Waddington’s landscape. The fact that rever-
sion to pluripotency is not a naturally oc-
curring process, together with the slow
kinetics and efficiencies of iPSC generation
(2–8), contributed to the idea that cells
needed to surpass energetic barriers during
reprogramming. Further investigations have
indicated that reprogramming to pluripo-
tency implies the “removal of molecular bar-
riers” (a term generally used through the
literature; yet, from a mathematical point of
view, barriers might be removed, diminished,
or simply change in their nature for allowing
cells to proceed to a pluripotent state) present
in differentiated cells. These findings have
opened the question as to whether only an
elite subset of cells is able to overcome these
limitations and become fully reprogrammed
(9). Arguing against this possibility, Hanna

et al. showed that virtually all cells have the
ability to be reprogrammed given sufficient
time and suggested that reprogramming
was largely ruled by stochastic cellular tran-
sitions (10). From this study, it was clear that
accelerating the kinetics of reprogramming,
mainly by accelerating cell division rates, con-
tributed to enhanced efficiencies at a given
analyzed time point. Additionally, it was
shown that, whereas certain populations are
seemingly refractory to reprogramming, the
ability to generate iPSCs is intrinsic to any
cell inside the global population given suffi-
cient time and the appropriate “reprogram-
ming push,” whether by additional expression
of the Yamanaka factors, the use of additional
reprogramming factors, the use of chemicals,
or even by direct modification of epigenetic
components. Thus, Hanna et al. concluded
that reprogramming did not proceed by fa-
voring an elite model in which only some cells
have the ability to generate iPSCs (10–12).
More recently, the Hanna group has reported
on a critical epigenetic component whose ma-
nipulation greatly enhances and accelerates
reprogramming to iPSCs (12). Specifically,
down-regulation of methyl CpG-binding
domain 3 (MBD3) levels were reported to
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enhance reprogramming to efficiencies
nearing 100%, therefore bringing about the
possibility that reprogramming proceeds, at
least under these conditions, as a determin-
istic process (12).

Waddington Landscape: A Platform for
Modeling Differentiation Landscapes?
Notwithstanding all these observations or the
myriad known roadblocks to pluripotency
that have been reported thus far, including
cell proliferation and epigenetic remodeling
(13–19), it is still unclear how best to re-
present reprogramming in a mathematical
framework or even whether a complete
mathematical framework can exist for re-
programming processes. The question remains
as to what is the best way to incorporate
differentiation, that is, the developmental
processes exemplified by the Waddington
landscape, and dedifferentiation, the process
of reprogramming to iPSCs into a rigorous,
quantifiable theory. One option for such
mathematical models is to focus on land-
scapes describing differences in free energy
between possible cellular states. Thus, an
understanding of the landscape governing
the reprogramming would allow one to make
quantitative predictions for reprogramming
kinetics and the best clinical methodologies
to shepherd cells from one state into another.
Mapping such a landscape can be done in
different ways, usually using measurements
of cell state transition times or by derivation
from first principles using kinematic bio-
chemical models.
In the last few years, much progress has

been made toward the establishment of a
mathematical framework describing devel-
opment, which is the differentiation of cells
into specialized cell lineages. Recent reports
have evaluated and mapped sections of the
developmental Waddington landscape by
leveraging on statistical physics (20–24).
Building on their work with nonequilibrium
network circuits (20, 21, 24), Wang et al.
were able to map a small segment of the
Waddington landscape pertaining to the tran-
sition of the multipotent myeloid progenitor
cell into either a myeloid or erythroid (24).
As was anticipated by Waddington, they ob-
served that the initial multipotent cell starts
in a metastable state and flows into one of
two attractor basins corresponding to the fi-
nal differentiated cell states. Most noticeably,
they also compute the most probable paths
between the initial and final states of the cells
during development. Interestingly they ob-
serve a hysteresis effect where the most pro-
bable differentiation path was not equal to
the most probable dedifferentiation path (24).
Therefore, implying that transitions through

different cell states might require more than
a simple scalar energy field, like an additional
force field that will push the cells as they
travel from one state to the next. Similar
effects were also observed following extensions
to a larger network of 52 genes related to
stem cell differentiation (25). Noticeably, the
forces necessary to transit through different
cellular states can represent intrinsic cellular
factors, such as the use of reprogramming
factors, environmental and cell interaction
signals, such as those driving differentiation
and development, and media conditions for
driving the differentiation, or dedifferentia-
tion, of one cellular state to another.
Regardless of the actual forces underlying

the conversion of one cellular state to another
one, these observations bring about the
question of whether reprogramming to iPSCs
effectively follows the same pathways ob-
served during the development of an organ-
ism in a reverse manner or whether different
paths are followed during the dedifferentia-
tion of somatic cells to iPSCs. If reprogram-
ming follows an inverse developmental path,
this would imply that partially reprog-
rammed cells could represent intermediate
multipotent states similar to those observed
during development and open new venues
for the generation of specific cell types in ab-
sence of full reprogramming to pluripotency.
On the contrary, if reprogramming to iPSCs
proceeds through alternative paths to those
followed during development and cell dif-
ferentiation, partially reprogrammed cells
might them represent a somewhat artificial
state with no real natural counterpart. No-
ticeably, this does not necessarily exclude the
possibility of generating intermediate multi-
potent progenitor cells (26). Several different
reports have argued in favor of these possi-
bilities (27, 28). First, Polo et al. analyzed in
a systematic manner the process of de-
differentiation to iPSCs from an epigenetic
and genomic perspective and speculated that
the process could inversely recapitulate de-
velopment (27). Although this interesting
possibility was raised based on the sequence
of molecular remodeling events observed
during the course of reprogramming, actual
comparisons with the intermediate cell states
naturally occurring during development and
cell differentiation remained unreported. Re-
gardless of whether reprogramming proceeds
as an inverse “developmental process” and
natural progenitor states arise during iPSCs
generation, several recent reports have elab-
orated on the possibility of exploiting partial
reprogramming, or dedifferentiation, for lin-
eage conversion approaches: that is, the
generation of specific cell types in the absence
of iPSC generation. Lineage conversion has

received increased attention over the years as
a complementary approach to iPSC genera-
tion, and excellent recent reviews have been
published. Lineage conversion can be ac-
complished in the absence of cell de-
differentiation by forcefully establishing gene
signatures typical of the target somatic cell
type [e.g., overexpression of MYOD, a tran-
scription factor (TF) typical of differentiated
muscle cells, suffices for the conversion of
fibroblasts into muscle-like cells] (26, 29, 30).
Alternatively, several other publications have
reported on the use of reprogramming fac-
tors commonly used during iPSC generation
for the partial dedifferentiation of somatic
lineages to an intermediate, yet largely un-
defined, cellular state, with multipotent dif-
ferentiation properties (26, 30–35). The
possibility to drive lineage conversion pro-
cesses based on partial reprogramming
argues that, at least during the initial phases
of reprogramming, the use of the Yamanaka
factors or others related to the acquisition of
pluripotency first erases differentiated cell
identity and that such epigenetic mod-
ifications allow for cell respecification into
appropriate lineages on exposure to extra-
cellular and/or additional intracellular clues.
Indeed, erasure of the epigenome during
iPSC reprogramming has been largely docu-
mented, with iPSC reprogramming factors
acting as pioneer TFs, i.e., factors whose ini-
tial activities rely on the modification of the
epigenome to allow for the necessary chro-
matin modifications permitting and guiding
subsequent access to specific gene promoters
during the initial steps of reprogramming
(29, 36–38).

Quantifying Pluripotent States and
Population Heterogeneity
Mapping reprogramming landscapes, whether
during iPSC generation or even in lineage
conversion processes, can provide detailed
insights on the process if the specific gene
networks regulating the process are well
established (Fig. 1). However, this approach
has some inherent limitations. For one, cell
states are represented in the space of gene
expression, meaning that for complicated
processes the networks can be large, as in the
case of the 52-gene network recently studied
by Li and Wang. Comprehensive studies on
the gene networks underlying reprogramming
to iPSCs are of outmost importance because
despite recent reports highlighting more pre-
cise gene networks underlying reprogramming
(27, 39–41), there is always uncertainty in the
completeness of the gene network. Despite this
uncertainty, recent insights on the molecular
mechanisms driving reprogramming to
iPSCs have indicated the existence of two
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distinct waves of molecular events, regardless
of whether single cells or whole populations
were analyzed during the initial reprogram-
ming steps (27, 42). During the early phase
(up to 3 d) of reprogramming, epigenetic
remodeling appears to take place at the
chromatin level in line with a recent report
suggesting that the reprogramming factors
act as pioneers TFs (37). Accompanying
chromatin remodeling, transcriptome changes
result in the down-regulation of markers
characteristic of the initial somatic cell pop-
ulation while contributing to the activation
of cell cycle and mesenchymal-to-epithelial
transition genes. From days 9 to 12, a second
major wave of events is observed, where
epigenetic remodeling occurs at the methyl-
ome level, accompanying the up-regulation
of genes related to the establishment and
maintenance of pluripotency. Thus, from
the second wave onward, the reprogram-
ming could proceed in the absence of ex-
ogenous reprogramming factor expression.
These observations follow a previous report
describing a first phase of stochastic effects
preceding the hierarchical activation of
multiple transcription factors orchestrating
reprogramming to iPSCs (39). These reports
converge on the idea that once endogenous
pluripotency factors, including Sox2 (38),
Oct4, and Nanog homeobox (Nanog), are
activated, cells will ultimately progress to
iPSCs (27, 28).
However, high-dimensional spaces are

difficult to analyze because we are inherently

restricted to small (two- or three-) dimen-
sional visualizations. Therefore, it may be
easy to overlook, for instance, subpopulations
of partially reprogrammed cells that are ap-
parently refractory to reprogramming as seen
in some dedifferentiation experiments. One
potential explanation is that these refractory
cells may have fallen into local, false meta-
stable minima in the cell state space, and it is
not clear that these false minima will re-
present natural intermediate progenitor states
such as those arising during development as
discussed above. Whether reprogramming to
iPSCs faithfully recapitulates developmental
programs in an inverse manner could be
investigated, for example, by comparing
intermediate dedifferentiated cells, such as
those generated during lineage conversion
processes driven by iPSC-reprogramming
factors, to the intermediate cellular states
emerging by differentiation during de-
velopment. From the standpoint of physical
experiments, this means that it may be possible
to reproducibly achieve a refractory sub-
population of partially reprogrammed cells
that seem homogeneous in physical char-
acteristics but are extremely heteroge-
neous—or even dynamically changing—in
their gene expression profiles. This discrepancy
between experiments and models represents
a potential pitfall that must be considered
when working with landscapes derived from
gene regulatory networks or any mathemat-
ical space where the dimensions might not

coincide identically with physically measur-
able characteristics.
An alternative to studying reprogramming

dynamics at the gene network level is to
study the cells at the population level (Fig. 1).
Population-level studies have the advantage
that they are built in the space of phenotypes
rather than a more abstract space. However,
this advantage is in itself a challenge because
it is inherently limited by the necessary
assumption that pluripotency represents
a qualitative functional state while obviating
intraclone variability at the single cell level,
the precise feature that gene network analyses
for modeling might actually overlook. As such,
population-level approaches would have to
consider different macrostates, for example,
the initial differentiated somatic cell and
the final pluripotent state as marked by func-
tional characteristics or defined pluripotent
marker expression. A prime example of pop-
ulation level macrostates comes from the
cancer biology field. Indeed, whereas plurip-
otent cells represent an individual cell identity
with exactly identical gene and protein ex-
pression signatures remains largely unknown
and a matter of intense research, this is not
the case in certain cancers. Indeed, multiple
different cancer stem cell populations have
been described for a given cancer type (e.g.,
glioblastoma), despite presenting different
gene and protein expression signatures. As
such, the field has recently pointed out the
necessity to characterize cancer stem cells not
based on marker expression but instead at the
functional level, while considering the possi-
bility of multiple different populations at the
genetic and protein level (42–45). These
observations led to the idea that cancer cells
might interconvert across different states
and raised the possibility that populations of
cancer stem cells arise by reversion of more
differentiated cancer cells. Such a model of
reversibility, or cancer cell reprogramming, has
been recently presented by Gupta et al. (46)
and, more recently, has been experimentally
corroborated by the Weinberg laboratory in
breast cancer cells.
In terms of pluripotent cells, recent reports

seem to indicate that iPSCs represent a func-
tional state presenting a high degree of vari-
ability when comparing different clones or
even at the single-cell level (47–49). However,
whereas single-cell variability undoubtedly
occurs as a consequence of different epige-
netic signatures and/or the presence of dif-
ferential genomic aberrations, the actual
causes of these population-wide differences
remains unclear. As discussed by Liang and
Zhang (50), epigenetic and genetic aberran-
cies leading to interclone variability in terms
of gene expression might arise as a result of

Fig. 1. Comparison of mathematical models derived from single-cell and population-level analyses. (A) Schematic
representation of a probability landscape as determined from gene network analysis at the single-cell level. The planar
axes represent gene expression levels for two different genes G1 and G2; a vertical component would represent the
probability of a given cell to express the defining genes (G1 and G2) at a specific level. The arrows represent the curl
flux forces, and the colors represent the magnitudes of the potential. The motion of a cell in this space is governed by
both the curl flux and the shape of the potential landscape. For simplification, reprogramming has been depicted as
the changes in gene expression from mesendodermal- and ectodermal-derived somatic lineages (e.g., cardiomyocytes
and hepatocytes serve as a representative mesendodermal-derived lineages, whereas neurons would represent and
ectodermal origin). (B) Effective potential landscape determined from population-level analyses. This potential land-
scape reduces many of the complexities at the single-cell level into a 1D effective potential energy function in cell state
space. Higher potential energies are represented by larger heights. The numbers refer to the differentiated somatic cell
state (1) and the pluripotent state (2). Note that population approaches consider variable macrostates in which dif-
ferent individual gene signatures are equally represented.
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two different processes. First, the acquisition
of such aberrations might confer cells with
growing advantages and result in the positive
selection of defined epigenetic and genetic
patterns in an analogous manner to models
of cancer progression. Second, heterogeneity
in the initial somatic cell population might be
translated through to the final iPSC clones
rather than being completely washed out by
the reprogramming process. However, how
does intraclone variability arise at the single-
cell level? One possibility is merely due to
spontaneous mutation rates. Even when clonal
iPSC colonies have been established, the
continuous growth and proliferation of the
cells might contribute to the spontaneous
acquisition of mutation, ultimately affecting
gene expression and providing a level of
intraclone variability, a phenomenon ob-
served in embryonic stem cells (ESCs) in-
dependently of experimental reprogramming
(48). Another possibility deals with the actual
nature of pluripotent cells. Overall, pluripo-
tent cells represent a highly variable cell type,
and dynamic expression of not only so-called
pluripotent markers but also of early lineage
markers can be readily observed in culture
(50, 51).
These observations pose the question of

whether pluripotency represents a discrete
cellular identity and therefore whether spe-
cific epigenetic and genetic signatures should
be observed despite the variability expected in
normal distributions typically observed in
biological processes. Another possibility is
that pluripotency represents a dynamic func-
tional state that, whereas presenting certain
differences in terms of gene and protein ex-
pression, can be largely ascribed to the func-
tional ability to generate all different somatic
cell lineages on differentiation. Whether
pluripotency represents a discrete cellular
identity or rather a functional metastate is
a major and controversial question that re-
mains largely unsolved and would certainly
determine whether gene network mathe-
matical approaches are more suitable for the
modeling of reprogramming than pop-
ulation-level studies or vice versa. In support
of the notion that pluripotency might repre-
sent a functional state, we and others have
recently reported on the reprogramming
of somatic cells to iPSCs by substituting
so-called pluripotency factors with lineage-
specific genes (51, 52). By balancing counter-
acting differentiation forces, reprogramming
to a pluripotent state could be achieved, thus
implying the establishment of a fine-tuned
equilibrium as discussed by MacArthur and
Lemischka (47). Most noticeably, whereas
OCT4 has been traditionally considered
the master regulator of pluripotency and

irreplaceable for the reprogramming of hu-
man cells to iPSCs, genes associated to mes-
endodermal lineage specification were able to
substitute for OCT4 during the reprogram-
ming of murine and human fibroblasts to
a pluripotent state (51, 52). Together, these
observations highlight pluripotency as a
functional state rather than a discrete cellular
identity characterized by well-defined and
static gene networks and highlights pluri-
potency as a statistical property resembling a
macrostate in statistical physics as proposed
and thoroughly discussed by MacArthur and
Lemischka (47). If this macrostate identity is
correct, it would again create a challenge to
representing pluripotent states in a gene ex-
pression landscape, as the gene expression
signature for a pluripotent cell may be dy-
namic or nonunique.

Mathematical Approaches to Cell
Reprogramming
Given these challenges for representing plu-
ripotent cells in a mathematical framework,
it is important to dissociate those cellular
characteristics that are fundamental to plu-
ripotent cells from those that are merely or-
namental. By leveraging on detailed long-
term studies, population-level models that
are extensive enough to provide meaningful
predictions for the clinic can be constructed
by considering the space of observable
cellular phenotypes.
The first model of reprogramming at the

population level was presented by Hanna
et al. (10). By monitoring NANOG-GFP ex-
pression, a pluripotent-related gene up-
regulated in cells poised them to become iPSCs
(27), Hanna et al. previously found that given
enough time, virtually any cell could even-
tually give rise to pluripotent cells, in line with
the abovementioned reports (10). The results
were comparable under p53-null conditions,
albeit with faster kinetics, supporting the
notion that reduced cell proliferation repre-
sents one of the barriers to iPSCs and that
increased proliferation contributes to repro-
gramming (13). Because the reprogramming
times for the population were distributed
broadly instead of very narrowly, Hanna et al.
indicated that the data were more consistent
with the hypothesis that reprogramming hap-
pens stochastically rather than in a manner
with deterministic timing. It may be possible
that the process is in fact deterministic, and
the distribution of reprogramming times
results solely from hitherto uninvestigated
heterogeneities in the initial populations. This
type of hidden variables hypothesis could
perhaps be tested by comparing the re-
programming times of multiple preparations
of similar somatic populations. During the

preparation of this article, the Hanna lab-
oratory reported on the efficient reprog-
ramming of somatic cells to iPSCs with
efficiencies nearly reaching 100% in just
7 d. By modulating the expression of the
Mbd3/NuRD complex genes, components re-
sponsible for the remodeling of the chroma-
tin, Rais et al. were able to demonstrate that
chromatin remodeling acts as a major factor
preventing synchronized reprogramming to
iPSCs and established that MBD3 inhibition,
in combination with exogenous Yamanaka
factor expression in a permissive growth en-
vironment, sufficed for the conversion of
a largely inefficient process into a highly ef-
ficient one, in which cells progressively
undergo dedifferentiation toward pluri-
potency in an uninterrupted manner (12).
Although the full reprogramming process
took less than 1 wk compared with up to 18
wk in their original study, there is still no-
ticeable structure in the latency data. Rais
et al. found a relatively poor fit when mod-
eling the process as an infinitely sharp step
function and instead found the best fit to the
data to be a phase type distribution, which
results from the sequential action of one or
more Poisson-type processes (12).
There is significant agreement between

their model and their data when considering
the cumulative distribution functions (CDFs),
However, the probability distribution func-
tions (PDFs) of the data reveal deviations
from model predictions for the short-time
dynamics. Specifically, abrupt, noise-assisted
single barrier crossings are incompatible with
the data. A simple elaboration of this model
is to fit both the CDFs and the PDFs of the
data and consider the observed latencies as
the distribution of first passage times (DFPTs)
from the differentiated state to the iPSC state.
By fitting this distribution and appealing to
the Fokker-Plank formalism, it is possible to
infer the shape of an effective potential gov-
erning the reprogramming process. Such
an approach could provide a means for the
mathematical modeling of reprogramming
events. In such an scenario, the distributions
of latencies reported by Hanna et al. (10) are
better modeled by an inverse Gaussian dis-
tribution rather than an exponential distri-
bution, regardless of the cell lines analyzed
(10) (Fig. 2 and Table 1). In contrast to the
abrupt single transitions implied by an ex-
ponential distribution, first passage times that
are inverse Gaussian distributed correspond
to a uniform diffusion in cell state space aided
by a linear drift, meaning the initial pop-
ulation undergoes progressive changes to-
ward a final state. A linear drift diffusion
model represents a solution to the Fokker-
Planck equation when the potential landscape
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is a flat, sloping incline. Hence, one possibility
is that the potential barriers between the two
cell states, somatic and pluripotent, are effec-
tively diminished and/or changed during re-
programming in a manner that allows cells
to be pushed toward the pluripotent state.
Due to diffusion, some cells may intermit-
tently travel away from pluripotency, but the
drift, or overall push, ensures that the cells will
not in general transit back and forth between
states. Although the problem of finding the
potential that produces a distribution of first
passage times that best fits the data is formally
noninvertible, it is still possible to find a so-
lution by globally searching the parameter
space. In principle, it is intuitive to imagine
that the transition from somatic cell to plu-
ripotent cell in the presence of exogenous
transcription factor expression occurs as
a two-state transition model. We found,
however, that of all of the potentials con-
sidered, the best fit for the experimental data
was a flat landscape with a shallow slope, as
shown in Fig. 3. We note that our findings
and approach are in the same spirit as the
Langevin-based analysis used by Sisan et al.
(53) to model GFP expression heterogeneity
in clonal fibroblasts. These approaches differ
radically from constructing the landscape
directly from the regulating gene network
because it does not require a priori knowl-
edge of the gene circuitry and it reduces the
high-dimensional problem down to a single-
dimensional effective potential, as in the
original Waddington landscape. However,
such population-level approaches are not
exclusive but rather complement gene net-
work-based modeling studies, such as those
presents by Buganim et al. in a recent pub-
lication (39, 54).
Finally, by comparing the fitted inverse

Gaussian parameters for each cell type

studied by Hanna and colleagues, a consis-
tent interpretation for the action of MBD3
abrogation can be found based on the ac-
celeration of the drift speed driving reprog-
ramming (Tables 1 and 2). This remarkable
increase in drift speed can be interpreted in
cell state space as a much sharper potential
incline and in gene expression space could
correspond to either a steeper landscape or

a dramatic change in the curl flux along the
path of dedifferentiation. Because each cell
line analyzed encountered its own set of
molecular barriers, there was no a priori
guarantee that the fitted inverse Gauss-
ian parameters would be correlated. How-
ever, because OSKM mitigated these bar-
riers, we found that the fit parameters
provide a coherent picture of the physical
process even when the latencies are drasti-
cally different. We emphasize, however, that
one major implication remains regardless of
how the latency data are modeled: the fact
that all cells can become iPSCs given suffi-
cient time (10, 12, 27).

Conclusions and Perspectives
The observation that all cells have the potential
for reprogramming and that this process is
accomplished by the action of reprogram-
ming factors effectively modifying existing
barriers that normally prevent the spontane-
ous transition to a pluripotent state is an
important insight into the nature of reprog-
ramming process. Quantitative characteriza-
tion of the reprogramming process brings
closer the goal of defining reprogramming
methodologies for boosting reprogramming
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Fig. 3. Dedifferentiation to pluripotency is a gradual barrier-free process. (A) Prototypical two-state intermediate
barrier potentials and their numerically calculated distributions when varying height and width. The potential in 2D
closely approximates the best-fit linear and progressive dedifferentiation and provides excellent agreement with the
data. (B) Practical exemplification of the underlying distribution of reprogrammed cells when fit with a subset of the
data. From left to right, we increase the number of data points (red and blue, respectively) that are used to fit the drift-
diffusion model (orange and purple solid lines, respectively) to the measurements. Data points omitted from the fit are
shown in gray; the dashed gray lines show the fits using all time points. Effectively, once the peak in the reprogramming
rate had been observed, one can make accurate predictions for the future time course of the reprogramming process.
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efficiencies in terms of time and number of
generated iPSCs. It is important to point out
that, although the cell population approaches
presented here were based on quantitative
measurements obtained under continuous
ectopic OSKM expression (10), they also ac-
count for the measurements by Polo et al.
obtained using transient ectopic OSKM ex-
pression (12, 27) and are in agreement with
the “stabilization phase” recently reported by
Golipour et al. (40). According to a drift-
diffusion model, these barriers disappear,
whether by flattening or by being effectively
modified during reprogramming, allowing
cells to drift-diffuse toward pluripotency, a
process that can be further synchronized and
accelerated on inhibition of key chromatin
remodeling components such as MBD3. In
those situations where chromatin remodeling
is not experimentally manipulated, a small
fraction of cells in the presence of exogenous
OSKM will be fast enough or sufficiently
primed to be able to pass both barriers within
the initial days of reprogramming. Accord-
ingly, when exogenous OSKM expression is
turned off, the original barriers return, and
these cells become trapped between the two
barriers as “partially reprogrammed cells.” In
support of these observations, Polo et al.
found that these trapped cells could be res-
cued by further OSKM expression, which in
our model corresponds to a second removal
of the barriers, allowing the refractory pop-
ulation to proceed again via the drift-diffu-
sion process (27). Additionally, the recent
data from Hanna and colleagues indicate that
experimental removal of chromatin remod-
eling barriers results in the acceleration of the
reprogramming process, and the majority of
the cells are able to rapidly progress toward
the acquisition of a pluripotent state. There-
fore, it is tempting to speculate that these
biological observations of the reprogramming
process can all be reconciled in a single the-
oretical framework by postulating that the
effective action of OSKM expression—be it

exogenous or endogenous—is to eliminate
effective potential barriers, allowing all cells to
gradually dedifferentiate toward pluripotency
via a drift-diffusion mechanism as observed
by Hanna and colleagues (10, 12).
In summary, recent findings have started

to elucidate the nature of the pluripotent state
and shed new light into the causes account-
ing for pluripotent cell variability in terms of
their epigenetic and genetic signatures at the
single-cell level. The observations that plu-
ripotent cells represent dynamic cellular states
has led to the establishment of an equilibrium
model suitable for statistical modeling of
pluripotency as discussed by MacArthur and
Lemischka and experimentally implied by
two recent publications (47, 51, 52). Our
understanding of the nature of pluripotency
has matured alongside our understanding of
the gene interactions at the heart of the re-
programming process. These advances have
facilitated models of the reprogramming
landscape both at the single-cell level and the
population level. Approaches at both levels
are complementary representations of the
same problem and will both be important in
quantifying the reprogramming process. One
of the main applications for models of re-
programming is that they could allow for the
prediction of entire distributions of reprog-
ramming times with just a few initial data
points or from knowledge of the gene regu-
latory network. Such practical implications
will ultimately allow for the estimation of
defined experimental outcomes. By leverag-
ing on mathematical models, experimental
parameters such as the most suitable somatic
cell source for reprogramming or the time
necessary to obtain a given number of re-
programmed colonies can then be estimated,
thus saving time and the associated expenses
and eventually facilitating the use of reprog-
ramming approaches in the clinic. By map-
ping the reprogramming landscape in terms
of gene expressions, it may also be possible to
create novel reprogramming methodologies

that otherwise would not have been apparent
from standard molecular studies. Altogether,
as more and more reprogramming data are
collected, predictive mathematical models of
development and dedifferentiation will have
an increasingly important role in clinical and
drug discovery applications based on repro-
gramming approaches.

Materials and Methods
For all numerical and analytical analysis, we used Mathema-
tica version 8 for both Mac OS X and Windows. All kinetics
data, population data, and exponential model parameters
used herein are taken from figure 4 in Hanna et al. (10).
Numerical Solutions Based on the Fokker-Planck
Equation. To calculate the latencies h(t) numerically for
a given metastable two-state potential we first calculated
the underlying probability density function f(x,t) using
NDSolve to solve the Fokker-Planck equation

∂f
∂t

=D
∂
∂x

�
∂V0

∂x
+

∂
∂x

�
fðx,tÞ:

We set the initial distribution f(x,t) = 0 to be a narrow
normal distribution (width of 0.05) centered on the
higher of the two potential minima. We removed re-
strictions on the maximum number of steps NDSolve
could take by setting MaxSteps → f∞;∞g. We im-
posed boundary conditions that the probability dis-
tribution should go to zero both at the second (lower)
minima and at x→ −∞ (numerically implemented as
a point sufficiently anterior to the initial distribution to
be effectively inaccessible). We systematically varied
these implementations for boundary conditions at
x→ −∞ and found that they have minimal effect on
the final outcome. We also studied variations of the
initial and boundary conditions by varying the mean of
the initial distribution and position of the right-hand
barrier by 10% of their initial value.

Once the probability density f(x,t) was computed
numerically, we then computed the conditional proba-
bility of finding the particle having not passed over the
second potential minimum (located at b) at time t:
SðtÞ= R b

−∞ f ðx,tÞdx (55). The latency distribution is then
a negative derivative of S(t): hðtÞ=−ð∂S=∂tÞ. Thus, to
evaluate h(t) at a given time point, t, we evaluated the de-
rivative of f(x,s) with respect to s, integrated f(x,s) from
x=−∞ to x = b, and then evaluated the result at s = t. The
above mentioned computational calculations were done
for all t between t = 0 and t = 20 in steps of 0.1. Inte-
grations were done using NIntegrate with the default
method options.

To compare fits of cumulative data the cumulative
distribution functions for both the inverse Gaussian and

Table 1. Goodness-of-fit statistics

Comparative fit of cumulative data Nanog OE p21 KD p53 KD Lin28 OE NGFP WT

Cumulative fraction IG, wk 0.982 0.999 0.998 0.994 0.999
Cumulative fraction Exp, wk 0.9 0.962 0.974 0.893 0.983
Cumulative fraction IG, rescaled time 0.971 0.995 0.998 0.989 0.996
Cumulative fraction Exp, rescaled time 0.649 0.745 0.677 0.874 0.983
Fraction NGFP+ per week IG 0.794 0.975 0.991 0.93 0.9

For each of the comparative fits—cumulative fraction of NGFP+ cells measured in weeks, cumulative fraction of
NGFP+ cells measured in population rescaled time (data not shown), and the differential fraction of NGFP+ wells per
week—we calculated R2 values for the exponential distribution (Exp) and inverse Gaussian distribution curve (IG) fits.
We found that in all cases the inverse Gaussian distribution provided a better R2 to the fit. These R2 values are shown in
the table (note that R2 values for the exponential model fitting the fraction of NGFP+ per week were not included
because, being the result of a nonlinear fit, they were generically negative). OE, overexpression; KD, knockdown; WT,
wild type.

Table 2. Fits to gamma distributions

Cell type analyzed R2 a b

Nanog OE 0.831 5.135 0.797
p21 KD 0.981 7.516 1.571
p53 KD 0.996 9.993 2.283
Lin28 OE 0.9496 5.667 0.795
NGFP WT 0.9116 3.799 0.378

The table includes the goodness-of-fit parameters, the
shape parameters, a, and the rate parameters, b, for
gamma distributions fit to the differential fractions of
NGFP+ wells per week for each cell line observed. Note
that the R2 values are comparable to those for the inverse
Gaussian fits, and the shape parameters range from
roughly 4 to 10. OE, overexpression; KD, knockdown;
WT, wild type.
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gamma distributions were obtained in Mathematica
via CDF[InverseGaussianDistribution[a, b], t] and CDF
[GammaDistribution[a, b], t]—although these expressions
were also checked for consistency by hand.

Range of Two-State Potentials Studied. The potential
functions V0ðxÞ to be analyzed using the Fokker-Planck
equation were selected in two steps. First, prototypical
two-state quartic potentials were found by hand using
Locators in a DynamicModule coupled to the five coef-
ficients of a quartic polynomial. These potentials were
chosen for their relative and absolute positions of their
minima. The parameters for each starting potential were
then varied from 1/5 of their initial value to five times
their initial value (in steps of 1/10 of the initial value), and
their subsequent DFPTs were calculated. All different
DFPT calculations were repeated several hundred times,
and results were tested for their congruence with the
reported latency data.

In another systematic study of potentials, several data
points defining the positions of the minima, the height

and width of the intermediate barrier, and the shape of
the potential at infinity were varied and subsequently fit
to a quartic polynomial using the built-in function Fit.
Data points influencing the vertical positions of the
minima were varied from 0 to −200 and 0 to −400,
respectively (with the left minima always being greater
than the right). Data points influencing the horizontal
positions of the minima were varied from −100 to 0 and
0 to 100, respectively. Points influencing the barrier
height were varied from 0 to 100. For each potential, we
calculated the latency distribution using a logarithmic
distribution of diffusion constants ranging between 10−2

and 102. All variations were done independently.
For the specific potentials referenced in Fig. 3A, the

parameters for potentials A, B, and C, respectively, were
as follows: V0(x) = 4x4 − 9.3x3 − 5.5x2 + 5.8x, D = 1,
f(x,0) = 7.9788e−200(0.5711 + x)2, f(−2.0,t) = f(1.9971,t) =
0; V0(x) = 5.8x4 − 9.3x3 − 5.5x2 + 5.8x, D = 2.1, f(x,0) =
7.9788e−200(0.5388 + x)2, f(−2.0,t) = f(1.4129,t) = 0; and
V0(x) = 0.2x4 − 1.5x3 + 0.4x, D = 0.605, f(x,0) =
7.9788e−200(0.2907 + x)2, f(−2.0,t) = f(5.6091,t) = 0.

The interior of potential D was modeled to match the best
fit inverse Gaussian parameters; the parameters were as fol-
lows: V0(x) = 0.0046x4 − 0.0942x3 + 0.5951x2 − 2.8301x −
0.2170,D=1.45, f(x,0)=7.979e−200(x)2, f(−10.0,t)=f(10.81,t)=0.

Please refer to Tables 1 and 2 for exact R2 values of
the analyzed distributions.
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