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Hierarchical representations in the auditory cortex
Tatyana O Sharpee1, Craig A Atencio2,3 and Christoph E Schreiner2,3
Understanding the neural mechanisms of invariant object

recognition remains one of the major unsolved problems in

neuroscience. A common solution that is thought to be

employed by diverse sensory systems is to create hierarchical

representations of increasing complexity and tolerance.

However, in the mammalian auditory system many aspects of

this hierarchical organization remain undiscovered, including

the prominent classes of high-level representations (that would

be analogous to face selectivity in the visual system or

selectivity to bird’s own song in the bird) and the dominant

types of invariant transformations. Here we review the recent

progress that begins to probe the hierarchy of auditory

representations, and the computational approaches that can

be helpful in achieving this feat.
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Introduction
Although object recognition seems effortless, it is a chal-

lenging computational problem [1]. The difficulty arises

because of the dual need to be able to discriminate stimuli

based on potentially subtle yet important clues [2,3], such

as discriminating between different syllables, regardless

of how fast they are spoken or the speaker’s voice. This

suggests that peripheral representations might be recoded

in a form that is tolerant, or ‘invariant’ to ‘identity-pre-

serving’ transformations [1]. Computer science studies

show that increasing the number of processing layers can

broaden the range of recognition tasks that the circuit can

handle, while simultaneously improving performance,

learning time, and exponentially reducing the number

of neurons (reviewed in [4�]). However, finding the right

hierarchical structure for broad recognition systems that
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can match human performance regarding object recog-

nition in natural environments remains an open problem.

Characterizing feature selectivity
How can we systematically characterize the preferred

stimulus features along the auditory hierarchy? In the

visual system, progress was made possible by Hubel and

Weisel’s discovery that bars and edges represent a close-

to-optimal stimulus feature for many cells in the primary

visual cortex (V1), and by the discoveries of other

researchers that preferred stimulus features further along

the hierarchy include curved contours [5], followed by

hands and faces [6]. In the auditory system, one can use

neuroethology to help guess the optimal stimulus [7]. For

example, selectivity for a bird’s own song was demon-

strated within areas of avian auditory systems that are

homologous to mammalian secondary auditory cortices.

However, analogous stimuli for mammalian auditory

neurons have been difficult to identify. For example,

when vocalizations are played in forward and reverse

directions, the differences between the responses are less

robust in auditory cortical areas [8–11] compared to those

found in the avian song selective areas. On the basis of

presumed complexity of representations at the level of

the primary auditory cortex (A1), it has been argued that

A1 is less similar to primary visual cortex and more similar

to the final stages of visual processing located in the

inferotemporal cortex [12]. This viewpoint is further

supported by the observation that neural responses are

less redundant in auditory cortex and thalamus than they

are in inferior colliculus [13��]. By comparison, neurons in

the output layers of V1 are more correlated than in the

input V1 layers [14], suggesting the redundancy among

V1 neurons is higher than at the earlier visual stations.

One-dimensional models
Without an ethologically guided guess of what the best

stimulus might be, there are two types of statistical

approaches for characterizing auditory feature selectivity.

One family of approaches relies on adaptive search pro-

cedures whereby the stimulus is generated according to

the responses to past stimuli in an effort to increase the

strength of the response [15–17]. Theoretical work con-

tinues on improving methods for adaptive stimulus

design [18], making it a promising research direction

for the characterization of neurons with complex feature

selectivity.

The second family of statistical methods consists in

recording the responses of neurons to large numbers of

sounds. After the experiment, one correlates which

stimuli elicited a spike and which did not. In its simplest
 cortex, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.05.027
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form, this procedure involves computing the spike-trig-

gered average (STA) — the difference between the aver-

age of all segments of stimuli that elicited a spike and the

average of all presented stimuli [19–23]. Pioneered by de

Boer and Kuyper [19], this approach has been generalized

to characterize spectrotemporal filtering properties of

neurons from the auditory periphery to A1 [20,22,23],

as well as in other sensory modalities (for a review

focused on the visual system see [24]). Applying this

approach in A1, one study found that neurons of awake

primates were particularly selective for frequency modu-

lations [25��]. This was later confirmed using synthetic

stimuli termed ‘drifting dynamic ripples’ [26�]. Other

studies in A1 found simpler features that often consisted

of a single excitatory region surrounded by one or more

inhibitory regions [27,28]. Additionally, when relevant

spectrotemporal features have been obtained with linear

models, a range of context-dependent phenomena have

been observed: in some cases the features were very
Please cite this article in press as: Sharpee TO, et al. Hierarchical representations in the auditory
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similar across different stimulus ensembles [29], in other

cases essential nonlinearities  were observed [30��,31,32],

and in some there was a reduced fraction of explained

variance [33,34].

How can we reconcile these findings? It turns out that the

complexity of relevant stimulus features and the degree

to which neural responses can be described by a linear

model varies systematically across the cortical column in

A1 (Figure 1). Granular layers have preferred stimulus

features that are more separable in frequency/time space

than those in supra-granular or infra-granular layers.

Furthermore, responses in granular layers were more

‘linear’, that is they were better described by a model

with one relevant stimulus feature than neurons in output

layers [35�,36]. These findings can help explain the

observed range of complexity in feature selectivity of

A1 neurons and how well linear models account for their

responses (see also [34,37]).
 cortex, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.05.027
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A summary of stimuli often used to characterize the feature selectivity of auditory neurons, the stimulus statistical properties, and methods currently

available. For independent Gaussian stimuli, relevant stimulus features can be computed as spike-triggered average (STA) or by diagonalizing the

spike-triggered covariance (STC) matrix. STA yields only one of the relevant features, whereas STC yields all N features. *If stimuli are Gaussian but

globally correlated, then both methods can still be used, provided the features are normalized by the second-order stimulus covariance matrix [41,42].

If stimuli are non-Gaussian (or equivalently exhibit correlations between more than two points in the spectrotemporal space, as in the case of natural

sounds), then relevant features can be found as those that account for the maximal amount of information in the neural response. The process of

searching for maximally informative dimensions (MID) corrects for stimulus correlations of any order, works with flexible nonlinearities, and can be

extended to multiple stimulus features (currently up to N = 3 features can be estimated [84]). **Although dynamic random chord stimuli are often non-

Gaussian, these effects often become negligible as a result of filtering transformations within the auditory system following the rules of the central limit

theorem in the absence of correlations. This allows the use of STA and STC with random chord stimuli.
One of the advantages of spike-triggered methods is that

they provide not only the estimate of the preferred

stimulus feature (spectrotemporal receptive field, STRF)

but also the nonlinear gain function (nonlinearity) that

describes how spiking probability changes as a function of

the similarity between the presented stimuli and the

optimal stimulus feature. The nonlinearity can capture

some inherent neural response properties, such as recti-

fication (firing rate cannot be negative) and saturation

(firing rate is limited by the refractory period). These

effects become increasingly more pronounced along the

auditory neuroaxis (Figure 1). Incorporation of the non-

linearity into models can improve the accuracy of neural

response predictions [38]. Crucially, it can help reconcile

the observed fast rise times and short response durations

in neural responses to frequency modulated (FM) tones

with the relatively slow time course of STRFs. Although

in many cases the presence of the nonlinearity does not

affect STRF estimation [19,39–42] (but see [43–45] for

exceptions to this rule; dimensionality reduction methods

are summarized in Figure 2), taking the nonlinearity into

account can sharpen the predicted tuning. This effect

alone could account for differences in the dynamics of V1

responses and their relevant spatiotemporal features

[46,47] (reviewed in [48��]). It would be exciting to see

if similarly simple calculations that take the nonlinearity

into account can resolve the analogous controversies in

auditory research.
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Multidimensional models
However successful, models based on one stimulus fea-

ture are problematic from the standpoint of invariant

sound identification. For example, any 1D model will

confound responses to a suboptimal feature presented

loudly with an optimal feature presented softly. Similarly,

a 1D model cannot implement invariance to cadence,

because the stretching in time will alter the match with

any given STRF. There are two types of general strat-

egies for solving the context-independent sound identi-

fication problem. One is to expand the stimulus space,

treating the same stimuli as different depending on the

value of a contextual variable. This approach is compre-

hensive, but can be done only for a few well-defined

context variables, such as mean sound level. Multilinear

models that work in the three dimensional stimulus space

defined by time lag, frequency, and sound level provide

good descriptions of A1 responses [49�]. Mean sound level

holds special importance in auditory perception, and

could thus justify the expansion of stimulus dimension-

ality. The second strategy for solving the object recog-

nition problem is not to explicitly expand the stimulus

space, but to use combinations of different features. For

example, phenomena such as two-tone masking (one tone

affects the response to another simultaneously present

tone) and forward suppression (a preceding tone sup-

presses the response to a following tone [50–53]) can

be seen as building blocks of invariant sound identifi-
 cortex, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.05.027
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cation [54]. These classic auditory phenomena can be

accounted for by multidimensional LN models with a

nonlinearity that depends on stimulus components along

two (or more) relevant stimulus features. The form of

nonlinearity is not restricted, and can characterize both

cooperative and suppressive effects between the relevant

components. A variety of computations with respect to

two features have been observed in A1 [55,56�] (Figure 1).

The presence of multiple relevant stimulus features is

consistent with other nonlinear and context-dependent

effects observed throughout the hierarchy of auditory

representations. For example, multidimensional descrip-

tions of neural coding may provide a complementary way

to account for the dynamic effects of first spike latency

[57]. While 1D models with a fixed threshold applied to

low-pass filtered sound amplitude could account for much

of the latency data [57��], the introduction of a time-

dependent threshold was necessary for a full description.

A two-dimensional model with a fixed threshold that is a

function of both the low-pass filtered amplitude and its

first time derivative may provide another way of account-

ing for this phenomenon. Another example concerns the

hypersensitivity of auditory cortical neurons to small

perturbations of their acoustic input [31], as well as the

large effect that naturalistic background noise can have on

the responses [30��]. These effects are difficult to explain

based on a single relevant stimulus feature, but they can

be explained with a multidimensional LN model [55,56�].
Curiously, the hypersensitivity of auditory neurons as

manifested by strong suppression of the responses from

the addition of a subthreshold tone is not observed in the

inferior colliculus; it first appears in the medial geniculate

body and is present in A1 [58]. This suggests that multi-

dimensional feature selectivity — an essential property

for performing object recognition — appears as a result of

hierarchical auditory processing.

The emergence of ‘multiplexed’ temporal
coding
The temporal dimension is central to the sense of hearing,

and is reflected in the sensitivity to different time-scales of

information in auditory signals, perhaps as the spatial

dimensions are to the sense of vision [2,3]. In both mod-

alities, neurons are able to integrate information over long

scales while also remaining sensitive to fine details. In the

visual system, invariance to image translation is one of the

prominent characteristics of high-level neurons. Face-se-

lective neurons in the inferotemporal cortex integrate

visual signals across large regions of the visual space while

maintaining fine spatial sensitivity (which is necessary to

distinguish between different faces). Analogously, acoustic

stimuli can also be characterized on multiple temporal

scales such as the ‘envelope’ (the contour of amplitude

modulations (AM) of the spectral components) and the

‘fine-structure’ (the cycle-by-cycle variations of the spec-

tral components that contribute to the time waveform).
Please cite this article in press as: Sharpee TO, et al. Hierarchical representations in the auditory
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Along the auditory neuroaxis, which extends from the

peripheral stations to A1, there is a progressively increasing

emphasis on encoding at coarser temporal resolution, as

well as increased tolerance to other stimulus parameters,

such as sound pressure level or modulation depth [59].

However, neurons maintain the ability for precise spike

timing. Spike timing with single millisecond precision has

been observed for sound onset detection [60,61] and with

precision of a few milliseconds for a variety of other

auditory stimuli, including tones [62,63], AM sounds

[64], their combinations [65��], as well as natural stimuli

[11,66] (although the utilized temporal precision is coarser

than found in peripheral or subcortical auditory structures

[66]). Thus, a picture is emerging where A1 neurons use a

relatively wide range of temporal cues, in a manner that is

reminiscent of the wide range of spatial scales that charac-

terize responses of high-level visual neurons.

Though there may be a shift from a temporal code to an

average rate and place code along the neuroaxis, both

types of information may still be utilized. On one hand,

the rate coding of AM sounds in the auditory cortex

carries significant information in A1, and it has been

suggested that rate information alone is sufficient to

explain the behavioral performance of monkeys in a

low-AM discrimination task [67] (but see [68]). On the

other hand, much of the amplitude modulation infor-

mation is reflected in the timing of cortical responses

(e.g. [69]). For example, spike-doublets with <15 ms

interspike intervals (ISIs) were shown to convey more

event information than long-ISI spikes. Pairs of short-ISI

spikes express over three times as much information as

long-ISI spikes, well over what would be expected from

summing two independent information sources [70].

Therefore, short-ISI spikes appear to be particularly

important in A1 stimulus encoding and have the potential

to provide low-noise, robust, and efficient representations

of sound features. It is also possible that different popu-

lations of A1 neurons use distinct encoding schemes,

either synchronized (temporal coding) or non-synchro-

nized (rate-coding) [71–73]. A recent study expanded on

this issue by demonstrating mixed schemes with synchro-

nized responses at some modulation frequencies and non-

synchronized responses at others [74]. Accordingly, cor-

tical neurons are capable of carrying multiple signals via

different codes with regard to AM. The information

conveyed by these different codes (rate and time) is

likely non-redundant, in that a joint code of rate and

timing parameters provides more information than either

code alone, as demonstrated for high modulation frequen-

cies [75]. A similar observation has been made for low

modulation frequencies (<60 Hz) that dominate

temporally encoded A1 activity [76]. Here, repetition-

rate information carried jointly by firing rate and inter-

stimulus intervals exceeded that of either code alone,

thus indicating the nonredundant contributions of the

two codes.
 cortex, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.05.027
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Concurrently employed codes may also provide comp-

lementary information, as demonstrated for LFP and

spiking signals for natural sounds [77��]. Further analysis

showed that the angular phase of the LFP at the time of

spike generation adds significant extra information,

beyond that contained in the firing rate alone [78]. These

findings provide further credence to the notion of ‘multi-

plexed’ coding at different timescales [79], with each

code carrying complementary information.

While the impact of hierarchical and parallel schemes of

information processing beyond A1 on ‘multiplexed’ cod-

ing is still unresolved, there is evidence of hierarchical

processing within A1, namely across the different cortical

layers. Here, granular layer phase-lock to the highest

pure-tone frequencies [62]. Additionally, granular layers

may also follow faster amplitude modulations, and out-

side of the main thalamic input zone the following rates

generally decrease [80].

Outlook
The emerging picture is that auditory processing

becomes increasingly multidimensional. This is

expected on computational grounds because the invar-

iant representation of auditory objects requires that

neural responses be tuned to conjunctions of features.

For example, Marr argued that to detect an edge [81] one

should measure both the presence of an oriented element

and the absence of an oriented element of the perpen-

dicular orientation. Mechanisms of forward-tone and

two-tone masking may serve as examples with a similar

computational purpose. Additionally, since there is a

high degree of tolerance and selectivity at the level of

A1, neural responses may be simultaneously sensitive to

a large number of stimuli. Thus, the full understanding of

auditory representations will likely require the develop-

ment of new statistical methods that can recover large

numbers of relevant stimulus features from responses to

naturalistic sounds. The development of these methods

may be guided by the construction of Bayesian methods

for model selection [49�,82], especially for building mini-

mal nonlinear models [83]. In addition, to achieve a full

understanding of temporal processing, temporal aspects

of neural coding for the same stimulus need to be sep-

arated from stimulus dynamics. This requires that the

information content of the stimulus be quantified, and

then compared to the content in the neural response. In

this way the maximally  achievable stimulus information

may be compared to the encoding that is actually pro-

vided by the neuron.
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