Eigenvalue spectra of large correlated random matrices

Alexander Kuczala and Tatyana O. Sharpee
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA and Department of Physics, University of California, San Diego, USA

Using the diagrammatic method, we derive a set of self-consistent equations that describe eigenvalue distributions of large correlated asymmetric random matrices. The matrix elements can have different variances and be correlated with each other. The analytical results are confirmed by numerical simulations. The results have implications for the dynamics of neural and other biological networks where plasticity induces correlations in the connection strengths within the network. We find that the presence of correlations can have a major impact on network stability.

Random matrices serve as a useful tool for analyzing the stability and dynamics of a variety of networks, from neuroscience [1–4] and genetic circuits [5] to ecology [6, 7]. Spectra of random matrices also help determine solutions to problems in nuclear [8] and condensed matter physics [9, 10] as well as in data compression [11, 12]. In particular, the rightmost eigenvalue (the eigenvalue with largest real component) determines the stability of the system’s linear dynamics and onset of chaos of the nonlinear dynamics. Knowledge of the onset of chaos is also useful for determining the network’s computational capabilities [13, 14] as well as the network’s response to inputs [15].

However, most of these results do not address an important feature of biological circuits where connection strengths are correlated [16–18]. While correlated Hermitian ensembles have received some attention, [19–22], results about correlated non-Hermitian ensembles are scarce [23, 24]. Most notably, the correlations in the connection strengths arise as the result of plasticity, where connections are modified depending on node activity and network input. One of the predominant effects of plasticity is that it induces correlations between forward and reverse connections [16, 18]. That is, the degree to which node i affects node j is correlated with the strength of the reverse connection from node j to node i. We focus here on this circuit motif when considering correlations between matrix elements.

Consider a network with N nodes $i = 1, \ldots, N$, with linear dynamics

$$\dot{x}_i(t) = -x_i(t) + \sum_{j=1}^{N} J_{ij} x_j(t),$$

where $x_i(t)$ describes the activity of each node and J is the $N \times N$ connectivity matrix. The solution of this system is $x(t) = e^{(1-J)t}x(0)$. This system has stable equilibria only if the rightmost eigenvalue of J is less than one. For networks with nonlinear dynamics, mean-field methods can be used to show that the transition to chaotic behavior still occurs when the rightmost eigenvalue of J is < 1 [1, 3, 4].

In this work we use the diagrammatic approach to analyze the case where the matrix elements of J are correlated and not identically distributed. Specifically, we consider an $N \times N$ complex non-Hermitian Gaussian random matrix J whose elements are distributed according to

$$P(J) \propto \exp \left[-\frac{N}{2} \sum_{i,j} (J_{ij}^* J_{ji}^*) V^{-1} (J_{ij}^* J_{ji}) \right]$$

where covariance matrix V consists of real-valued variances

$$\langle J_{ij} J_{ji}^* \rangle = \frac{1}{N} g_{ij}^2,$$

and real-valued covariances

$$\langle J_{ij} J_{ji} \rangle = \frac{1}{N} \tau_{ij} g_{ij} g_{ji}.$$

All other-second order correlations vanish. The gain matrix g_{ij} has positive elements. Correlation values τ_{ij} are symmetric in i,j, $|\tau_{ij}| \leq 1$, and denote the degree of correlation between forward j,i and reverse i,j connections in the corresponding random network.

To outline the steps of the derivation, we will first seek the expected density of eigenvalues of J for large N by first writing the density in terms of the Green’s function G. While G is analytic for Hermitian matrices, G is generally non-analytic for non-Hermitian matrices, so we cannot directly apply the diagrammatic method. We therefore relate G to the analytic Green’s function of a Hermitian random matrix H, which we compute with standard diagrammatic techniques. We derive a set of self-consistent equations for G for the case where the gain matrix g_{ij} is a continuous function in the limit $N \to \infty$, and the case where g_{ij} is block-structured. Finally, we apply our method to two example problems and compare the results to empirical eigenvalue distributions obtained by exact diagonalization of realizations of J.

We start by writing the expected density of eigenvalues of J in the complex plane as

$$\rho(x,y) = \frac{1}{N} \sum_k \delta(x - \text{Re} \lambda_k) \delta(y - \text{Im} \lambda_k),$$

where $\langle \cdot \rangle$ indicates an average over realizations of J according to Eq. (2). Defining $\theta = (\partial_x - i\partial_y)/2$ and $\bar{\theta} = \frac{1}{N} \sum_k \delta(x - \text{Re} \lambda_k) \delta(y - \text{Im} \lambda_k)$, we find that the presence of correlations can have a major impact on network stability.
$(\partial_x + i\partial_y)/2$, and using the identity $\delta \frac{1}{x-y} = \pi \delta(x)\delta(y)$ [25], we can write the density (5) in terms of the Green’s function

$$G(z, \bar{z}) \equiv \left\langle \frac{1}{N} \text{tr} \frac{1}{z-J} \right\rangle$$

as

$$\rho(x, y) = \frac{1}{\pi} \partial G(z, \bar{z}). \quad (7)$$

Since J is non-Hermitian, the eigenvalues of J will in general lie in some region of the complex plane. For example, Ginibre’s circular law states that if the elements of J are independently and identically distributed with variances g^2/N, then the eigenvalues lie in a disk of radius g [26]. The Green’s function is therefore not in general holomorphic, and we cannot expand in powers of $1/|z|$ as required for the diagrammatic expansion. Following [27], we can find the Green’s function by solving a related Hermitian random matrix problem, to which we can apply the diagrammatic approach. Define the $2N \times 2N$ Hermitian matrix

$$H = \begin{bmatrix} 0 & J - z \\ (J - z)^\dagger & 0 \end{bmatrix}. \quad (8)$$

The matrix Green’s function for H is

$$G(\eta, z, \bar{z}) = \left\langle \frac{1}{\eta - H} \right\rangle,$$

where we think of the eigenvalues of H as lying on the complex plane η. Since H is Hermitian, these eigenvalues will lie on the real axis, and G is holomorphic in η except for cuts on the real axis. Once G is computed, we obtain the original Green’s function G from \mathcal{G} by extracting the lower left matrix block and taking the limit $\eta \to i0^+$:

$$\mathcal{G}(\eta = 0, z, \bar{z}) = \left\langle \left(\begin{array}{c} 0 \\ \frac{1}{z-J} \end{array} \right) \right\rangle,$$

yielding Eq. (6):

$$G(z, \bar{z}) = \frac{1}{N} \text{tr} \mathcal{G}^{21}(\eta = 0, z, \bar{z}). \quad (11)$$

Here, \mathcal{G}^{21} is the lower left block of \mathcal{G}. To compute \mathcal{G} (9), we first rewrite $\eta - H = \mathcal{G}_0^{-1} - \mathcal{J}$ with

$$\mathcal{G}_0^{-1} = \begin{bmatrix} \eta & z \\ \bar{z} & \eta \end{bmatrix} \quad \text{and} \quad \mathcal{J} = \begin{bmatrix} 0 & J \\ J^\dagger & 0 \end{bmatrix}, \quad (12)$$

so that the random part \mathcal{J} has zero mean. Note that \mathcal{G}_0 is just \mathcal{G} with $J = 0$. We expand \mathcal{G} in \mathcal{G}_0 as follows:

$$\mathcal{G} = \sum_{n=0}^\infty \mathcal{G}_0 (\mathcal{J}\mathcal{G}_0)^n = \mathcal{G}_0 + (\mathcal{G}_0\mathcal{J}\mathcal{G}_0)\mathcal{G}_0 + \ldots \quad (13)$$

Here, the odd terms vanish since $\langle \mathcal{J} \rangle = 0$. Since the distribution over \mathcal{J} is Gaussian, each term in the sum reduces to the Wick contraction of n factors of \mathcal{J}. We therefore use the diagrammatic technique [28, 29] to represent each term in the sum. We denote the N node indices by roman letters $i = 1, \ldots, N$ and index the blocks by greek letters $\alpha = 1, 2$. We represent \mathcal{G}_0 by a single directed line carrying one set of indices, and the correlator $\langle \mathcal{J}\mathcal{J} \rangle$ by a double line carrying two sets of indices (Fig. 1) [27, 30, 31]. Indices are summed at each connecting vertex. The nth term in \mathcal{G} is the sum of all diagrams with n vertices. In the large N limit diagrams which have crossing lines vanish, and only “planar” diagrams remain [32, 33] [34]. This greatly simplifies the sum, since the only allowed diagrams are nested ‘rainbow diagrams’ such as those depicted in Fig. 1. This allows us to evaluate (13) by performing a resummation of \mathcal{G} in terms of the ‘self-energy’ matrix Σ:

$$\mathcal{G} = \sum_{n=0}^\infty \mathcal{G}_0 (\Sigma\mathcal{G}_0)^n = \left(\frac{1}{\mathcal{G}_0^{-1} - \Sigma} \right). \quad (14)$$

In the planar limit, the self-energy matrix is

$$\Sigma = \langle \mathcal{J}\mathcal{G}\mathcal{J} \rangle,$$ \quad (15)$$

encoding the nested ‘rainbow’ structure of the diagrams [29]. This is depicted diagrammatically in Fig. 1.

In block form, Eq. (14) is

$$\mathcal{G} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \left[\eta - (\Sigma^{11} \Sigma^{21} \eta - \Sigma^{22})^{-1} \right]. \quad (16)$$

and Eq. (15) is

$$\Sigma = \begin{bmatrix} \Sigma^{11} & \Sigma^{12} \\ \Sigma^{21} & \Sigma^{22} \end{bmatrix} = \left[\eta - (\Sigma^{11} \Sigma^{21} \eta - \Sigma^{22})^{-1} \right]. \quad (17)$$

FIG. 1. Diagrams used in the expansion (13) of \mathcal{G}. \mathcal{G} is the sum of all planar diagrams in the large N limit. \mathcal{G} can be re-summed in terms of the self-energy matrix Σ. In the large N limit, Σ consists of all diagrams nested under a double line (15).
where we have denoted the blocks of \(G \) as \(A, B, C \) and \(D \). Substituting (17) into (16) will give us self-consistent equations for the blocks of \(G \).

Equations (16) and (17) describe the eigenvalue distribution in the general case, with or without correlations. Before analyzing the impact of correlations on the eigenvalue distribution, we first check that this result reproduces previous results obtained in the absence of correlations. When elements of \(J \) are independently distributed, the covariances (4) vanish. In this case we find [35]:

\[
\Sigma_{ii}^{11} = \sum_{j,k}(J_{ij}D_{jk}J_{kl}) = \frac{1}{N} \delta_{ii} \sum_{j} g_{ij}g_{lj}D_{jj}, \quad (18)
\]

\[
\Sigma_{ii}^{22} = \sum_{j,k}(J_{ij}^cK_{jk}J_{kl}) = \frac{1}{N} \delta_{ii} \sum_{j} g_{ij}g_{lj}A_{jj}, \quad (19)
\]

and \(\Sigma^{12} = \Sigma^{21} = 0 \). This means that the matrix \(\Sigma \) is diagonal. Then, since each block on the RHS of Eq. (16) is diagonal, each block of \(G \) is also diagonal. Inverting the RHS and equating matrix elements yields

\[
A_{ii} = \frac{\eta - \frac{1}{N} \sum_{j} A_{jj}g_{ji}^2}{q_i(\eta, |z|)}, \quad D_{ii} = \frac{\eta - \frac{1}{N} \sum_{j} g_{ij}^2D_{jj}}{q_i(\eta, |z|)}, \quad (20)
\]

\[
C_{ii} = \tilde{z}/q_i(\eta, |z|), \quad (21)
\]

where

\[
q_i(\eta, |z|) = (\eta - \frac{1}{N} \sum_{j} A_{jj}g_{ji}^2)(\eta - \frac{1}{N} \sum_{j} g_{ij}^2D_{jj}) - |z|^2. \quad (22)
\]

Writing out the blocks of \(G \) in Eq. (9),

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix}
\eta - (J - z)(J - z)^T & \eta - (J - z)^T(J - z) \\
\eta - (J - z)(J - z)^T & \eta - (J - z)^T(J - z)
\end{pmatrix}, \quad (23)
\]

and rewriting \(\eta = i\epsilon \), with \(\epsilon > 0 \), we see that blocks \(A \) and \(D \) are positive definite matrices multiplied by \(-i \). We therefore define \(a_i \equiv iA_{ij} \) and \(d_i \equiv iD_{jj} \), where \(a_i \) and \(d_i \) are positive real numbers. We also define \(c_j = C_{jj} \). This allows us to rewrite (20) and (21) as

\[
a_i = \tilde{a}_i/q_i, \quad d_i = \tilde{d}_i/q_i, \quad c_i = \tilde{z}/q_i(\epsilon, |z|) \quad (24)
\]

with \(q_i(\epsilon, r) \equiv q_i(\eta, |z|) \equiv \tilde{a}_i\tilde{d}_i + r^2 \) and

\[
\tilde{a}_i \equiv \epsilon + \frac{1}{N} \sum_{j} a_{ij}g_{ji}^2, \quad \tilde{d}_i \equiv \epsilon + \frac{1}{N} \sum_{j} g_{ij}^2d_{jj}, \quad (25)
\]

where \(r = |z| \). We now have a set of \(2N \) self-consistent equations (24) for the elements \(a_i \) and \(d_i \) of the Green’s function \(G \). These can be solved numerically with \(\epsilon = 0 \) (or \(\epsilon \) set to a small value if many elements \(g_{ij} \) are also small). Once the \(a_i \) and \(d_i \) are found, the \(c_i \) can be computed and used to find the original Green’s function \(G \) with Eq. (11), since the trace of \(G^{21} \equiv C \) is the sum of the coefficients \(c_i \equiv C_{ii} \). Note that since \(c_j = re^{-i\theta}/q_j(\epsilon, r) \) in polar coordinates, \(|c_j| \) depends only on \(r \). This allows us to rewrite Eq. (7) as a function of \(r \) only:

\[
\rho(r) = \frac{1}{2\pi N} \sum_j \left(\frac{\partial |c_j|}{\partial r} + \frac{|c_j|}{r} \right). \quad (26)
\]

The resulting eigenvalue distribution has support on the disk with radius \(r = \sqrt{\lambda_1(K)} \), where \(\lambda_1(K) \) is the largest eigenvalue of the matrix \(K_{ij} = g_{ij}^2/N \) (see Appendix).

Symmetric covariances We now allow \(J \) to have correlated elements across its diagonal (Eq. 4). Then \(\Sigma^{12} \) and \(\Sigma^{21} \neq 0 \), yielding a new expression for \(c \):

\[
c_i = \tilde{c}_i/q_i(\epsilon, \tilde{z}), \quad \tilde{c}_i \equiv \tilde{z} - \frac{1}{N} \sum_j \tau_{ij}g_{ij}g_{ij}\tilde{c}_j, \quad (27)
\]

where now \(q_i = \tilde{a}_i\tilde{d}_i + |\tilde{c}_i|^2, \quad b_i = \tilde{c}_i \). The \(\tau_{ij} \) denote the degree of correlation between \(i \) and \(j \) as in Eq. (4).

In this case, the eigenvalue density has the more general form

\[
\rho(x, y) = \frac{1}{\pi} \partial G(z, \tilde{z}) = \frac{1}{N\pi} \partial \sum_{j=1}^{N} c_j(z, \tilde{z}). \quad (28)
\]

The density \(\rho \) depends on \(x \) and \(y \) in a nontrivial way, and the support of the distribution is neither circular nor elliptical. The boundary of the eigenvalue distribution now satisfies (see Appendix for a derivation):

\[
\lambda_1(K(z)) = 1, \quad K_{ij}(z) = \frac{1}{N} |c_i(z)|^2 g_{ij}^2, \quad (29)
\]

where the complex-valued \(c_i(z) \) are now given by the self-consistent equations

\[
c_i = (z - \sum_j \tau_{ij}g_{ij}g_{ij}c_j)^{-1}. \quad (30)
\]

Now, to obtain the boundary, it is necessary to simultaneously solve (29) and (30) for each boundary point. For example, we can set \(z = re^{i\theta} \) and solve the above for \(r \) for each \(\theta \). Note that these expressions reduce to the circularly symmetric case when \(\tau_{ij} = 0 \).

Block structured We now consider the special case for which the gain matrix \(g_{ij} \) is block structured. Block structured matrices describe networks with nodes partitioned into subgroups, for example neural networks with cell-type-specific connectivity [3], or networks of ecological communities [24]. Suppose the nodes of the network are grouped into \(M \) populations of size \(f_mN \), for \(m = 1 \ldots M \) and that \(J \) is block structured so that the gain \(g_{mn}^2 = g_{mn} \) and correlations \(\tau_{mn} = \tau_{nm} \) depend only on the population indices \(m \) and \(n \) of the output and input nodes \(i \) and \(j \), respectively. This allows us to sum (24) and (27) over each population. Let
\[N_m = N \sum_{n=1}^{N_m} f_n. \] Then define \[a_m = \frac{1}{Nf_m} \sum_{i=N_m+1}^{N} a_i, \] and define \(c_m \) and \(d_m \) similarly. Then \(q_m \equiv q_i \) depends only on the population index, and now we have
\[a_m = \frac{a_m}{q_m}, \quad d_m = \frac{d_m}{q_m}, \quad c_m = \frac{c_m}{q_m}, \] and \(q_m = \frac{a_m d_m + |c_m|^2}{q_m} \), with
\[\dot{a}_m = \epsilon + \sum_{n=1}^{M} f_n a_n g_{mn}^2, \quad \dot{d}_m = \epsilon + \sum_{n=1}^{M} g_{mn}^2 f_n d_n, \] and \(\dot{c}_m = \bar{z} - \sum_{n=1}^{M} \tau_{mn} g_{mn} g_{nm} f_n c_n. \)

Now the dependence on \(N \) is removed, and we need only solve 3\(M \) self-consistent equations. The eigenvalue density is now
\[\rho(x, y) = \frac{1}{\pi} \partial \sum_{m} f_m c_m(\bar{z}, \bar{z}). \]

The boundary of the distribution satisfies equations similar to (29), (30), see Appendix. When \(\tau_{mn} = 0 \), the distribution has boundary \(|z| = \sqrt{\lambda_1(K)} \), where \(\lambda_1(K) \) is the largest eigenvalue of the matrix \(K_{mn} = g_{mn}^2 f_n \) [3].

To verify our results, we consider a network with \(M = 3 \) populations, with relative population sizes \(f = (1/6, 1/3, 1/2) \), and
\[g_{mn}^2 = \begin{bmatrix} .54 & .83 & .65 \\ .95 & .46 & .01 \\ .72 & .59 & .55 \end{bmatrix}, \quad \tau_{mn} = \begin{bmatrix} .5 & -.2 & .9 \\ -.2 & .3 & .1 \\ -.9 & .1 & -.6 \end{bmatrix}. \]

We iteratively solved the self-consistent Eqs. (32) for a grid of points on the complex plane and approximated the eigenvalue distribution using finite differences, shown in Fig. 2(a). We compare this distribution with eigenvalue histograms generated by exact diagonalization of 1000 realizations of \(J \). We find that realizations of \(J \) with complex elements agree with our result (Fig. 2(c,e,f)). Removing the correlations (4) from realizations of \(J \) yields a circular distribution (Fig. 2(b)). Notably, we find that including these correlations distorts the eigenvalue distribution in a nontrivial way: the distribution is neither a circle nor an ellipse. Furthermore, we find using Eqs. (41),(39) (in the Appendix) that the rightmost eigenvalue of the distribution has moved from \(\sim 0.713 \) to \(\sim 0.890 \), so that the corresponding linear system (1) becomes more unstable.

For any finite \(N \), \(J \) has non-universal features that disappear as \(N \to \infty \). In particular, the matrix \(J \) with real elements will have a higher density of eigenvalues on the real axis (Fig. 2(d)). However, we find that the proportion of eigenvalues on the real axis drops off as \(1/\sqrt{N} \), as anticipated for large \(N \) [37].

To demonstrate that our technique applies to situations where the variance and covariance depend continuously on the node indices \(i, j \), we consider a neural network inspired by connectivity around pinwheels in the visual cortex [38, 39]. The neurons are arranged on a square grid on the unit square and assigned orientations based on their position, shown in Fig. 3(a). For neurons \(i \) and \(j \) with positions \(r_i \) and \(r_j \), the gain is\[g_{ij} = g_0 \exp \left[-|r_i - r_j|^2/w_r^2 - \Delta \theta^2(r_i, r_j)/w_\theta^2 \right], \] where \(\Delta \theta(r_i, r_j) \) denotes the difference in orientation of neurons at \(r_i \) and \(r_j \). We choose the covariance to be proportional to the gain: \(\tau_{ij} = \tau_0 g_{ij} \). In this example, \(w_r = 0.2 \), \(w_\theta = 20^\circ \), \(g_0 = 1 \), and \(\tau_0 = 0.8 \). The gain matrix for a grid of 16 \(\times \) 16 neuron populations is shown in Fig. 3(b). This grid size requires us to solve \(N = 256 \) self-consistent equations to determine the eigenvalue density. For comparison, we generated 1000 realizations of
J with $N = 2048$; to mitigate finite-N effects [4], we used block structured matrices with 16×16 populations, with 8 nodes in each population. We find that our result closely matches the empirical distribution (Fig. 3(c-e)). Increasing the grid size to 32×32 and 64×64 did not appreciably change the resulting eigenvalue distribution, indicating that the current resolution is sufficient. Finally, using Eqs. (29-30)), we find that including correlations moves the rightmost eigenvalue from 0.24 to 0.41, decreasing the stability of the system.

Our results can be extended to more general correlation structures, such as correlations between arbitrary blocks or clusters. However, including more general correlations increases the number of self-consistent equations that must be solved in [16]. Our results can also be extended to the case of nonzero mean as in [33]. The diagrammatic technique can also be used to study further quantities of interest such as eigenvalue correlations [30], eigenvector correlations [40, 41], and linear dynamics not captured by the eigenvalues [33].

In conclusion, we have adapted the diagrammatic technique to study correlated connectivity matrices that are not independently or identically distributed, and relevant to biological circuits. The results indicate that the presence of correlations can dramatically influence the network stability and dynamics. The correlation structure is determined by plasticity rules, which act locally on connections between nodes [16, 18]. The presented analytical framework therefore makes it possible to evaluate the impact of local plasticity rules on global network activity.

Appendix

Derivation of the boundary of the eigenvalue distribution in the absence of covariance between matrix elements

Here we first show that the eigenvalue density (26) for J with independent elements ($\tau_{ij} = 0$) has support on the disk with radius $R = \sqrt{\lambda_1(K)}$, where $\lambda_1(K)$ is the largest eigenvalue of the matrix $K_{ij} = g_{ij}^2/N$. There are two solutions to the self-consistent equations (24) in the limit $\epsilon \to 0$: a trivial solution, with all $a_i = d_i = 0$, and a non-trivial solution, with all $a_i, d_i > 0$ [42]. The trivial solution corresponds to the region where $\rho(r) = 0$ [27, 31]. Indeed, we see that when $a_i = d_i = 0$, all $q_i = r^2$. Then by (24) $c_i = 1/z$, and therefore $\rho(r) = 0$ by (26).

Now consider the region where $\rho \neq 0$, where all the a_i and d_i are nonzero. Then, combining (24) and (25) for d_i in the $\epsilon \to 0$ limit yields

$$q_i d_i = \frac{1}{N} \sum_j g_{ij} d_j.$$ \hspace{1cm} (38)

We determine the radius R of the boundary by finding where the two solutions match. Assuming continuity of the a_i and d_i, then as $d_i \to 0^+$ as we approach the boundary, all the $q_i \to R^2$. Then, in the limit, (38) indicates that d is an eigenvector of $K_{ij} = g_{ij}^2/N$ with eigenvalue R^2. Furthermore, since K and d have only positive entries, R^2 must be the largest eigenvalue $\lambda_1(K)$ of K by the Perron-Frobenius theorem. Thus, the boundary of the eigenvalue distribution has radius $R = \sqrt{\lambda_1(K)}$. A nearly identical argument shows $K_{mn} = g_{mn}^2 f_n$ for the block structured case. This result was previously presented in [43] and [4], and a similar argument was used in [33] for the case of matrices with non-zero mean. However, previous analyses do not hold when J has covariant elements.

Boundary with covariance

Now we show that when $\tau_{ij} \neq 0$, the boundary of the eigenvalue distribution satisfies (29) and (30). Again, we have $a_i, d_i \neq 0$ on the support of the eigenvalue distribution, and $a_i = d_i = 0$ otherwise. Plugging the trivial solution into (27), the c_i now satisfy

$$c_i = (z - \sum_j \tau_{ij} g_{ij} g_{ji} c_j)^{-1}.$$ \hspace{1cm} (39)
Now, approaching the boundary from the inside as before, in the limit \(d_i \to 0^+ \),

\[
d_i = \sum_j |c_i|^2 g_{ij}^2 d_j , \tag{40}
\]

where the \(c_i \) satisfy (39) in the limit. Since all the \(d_i > 0 \), this means that \(d \) is the Perron-Frobenius eigenvector of the matrix \(K_{ij} = |c_i|^2 g_{ij}^2 \) with eigenvalue 1. This means that the points \(z \) on the boundary satisfy

\[
\lambda_1(K) = 1 \tag{41}
\]

where \(\lambda_1(K) \) is the largest modulus eigenvalue of \(K \). Together, (39) and (41) determine the points \(z \) that lie on the boundary of the eigenvalue distribution. We have found that these equations can be solved efficiently as follows: First we write \(z = re^{i\theta} \) and fix \(\theta \). Then, to find the \(r \) satisfying (41), we use a root finding algorithm: at each step of the root finding algorithm, we iterate (39) to find the \(c_i(z) \).

If \(g_{ij} \) is block-structured, then we have only \(M \) variables \(c_m \), with

\[
c_m = \left(z - \sum_n \tau_{mn} g_{mn} g_{nm} f_n c_n \right)^{-1} \tag{42}
\]

and

\[
K_{mn} = |c_m|^2 g_{mn}^2 f_n \tag{43}
\]