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In this issue of Neuron, Mysore and Knudsen (2012) describe a simple, anatomically supported circuit that
can categorize stimuli into ‘‘strongest’’ and ‘‘others,’’ regardless of their absolute strength. Such flexible cate-
gorization cannot be achieved by lateral inhibition alone but also requires that the inhibitory neurons recip-
rocally inhibit each other.
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Figure 1. A Circuit with Lateral Inhibition Can Produce Switch-like Responseswith Constant
Threshold Value
The circuit diagram is shown on the left. Input and output neurons are marked with circles; diamonds mark
inhibitory neurons. Right: the responses of output 1 are plotted as a function of ‘‘competitor’’ input 2, for
different values of input 1 (corresponding to the stimulus strength within the receptive field). The switch
between high and low values of output 1 occurs for the same value of competitor input 2, regardless of
input 1. Input and output strength are in arbitrary units.
Selecting themost relevant stimulus in the

environment is one of the key elements of

behavior. It can be argued that this

process begins already in early sensory

systems where stimuli are transformed

to emphasize their most unexpected

features (Gollisch and Meister, 2010),

such as differential motion (Lettvin et al.,

1959; Olveczky et al., 2003) or deviations

from an anticipated trajectory (Berry et al.,

1999) or from expected second-order

stimulus correlations (Sharpee et al.,

2006). Many of these complex computa-

tions come about through the interplay

of lateral inhibition (also called ‘‘surround

suppression’’) and response normaliza-

tion—two features of neural circuitry that

are observed almost universally in

different neural systems (Olsen et al.,

2010; Carandini et al., 1997; Reynolds

and Heeger, 2009).

In some cases, stimuli can be usefully

categorized using predetermined bound-

aries (Prather et al., 2009). Often, how-

ever, these boundaries need to be

defined in relative terms, by separating

stimuli into the ‘‘strongest’’ and ‘‘others’’

(Mysore and Knudsen, 2011). The article

by Mysore and Knudsen in this issue

of Neuron argues that such flexible cate-

gorization cannot be achieved by lateral

inhibition alone and suggests that recip-

rocal inhibition between neurons that

mediate lateral inhibitory connections is

one of the simplest and most robust

ways of solving this task (Mysore and

Knudsen, 2012).

To gain an intuition for why reciprocal

inhibition is necessary, we will follow

the authors in considering model circuits

with two inputs and two outputs (Figures

1 and 2). This circuit’s task is to signal

which of the two inputs is the strongest.
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Empirically, responses to a single input

are nonlinear, saturating for strong inputs.

They are well fit by sigmoidal functions,

which is also expected on theoretical

grounds when a function is minimally con-

strained to relate inputs to outputs (Fitz-

gerald et al., 2011). We will assume that

all neurons in this circuit respond this

way to their inputs.

A circuit that includes lateral inhibition

(Figure 1) can yield switch-like responses

in output 1 when the strength of input 2

is increased beyond a certain value.

However, the threshold value does not

depend on input 1. In other words, this

categorization is defined in absolute

terms and does not encode the relative

strength of the two inputs. In contrast,

a circuit where inhibitory ‘‘interneurons’’

also inhibit each other produces switch-

like responses (Figure 2), with thresholds

that increase with the strength of input 1.

Thus, this simple elaboration of the
r Inc.
circuit is sufficient to produce switch-

like responses that reflect the relative

strength between the two inputs, pro-

ducing nearly constant large responses

to a stronger input and also nearly con-

stant small responses to a weaker input.

It is noteworthy that output responses to

a weaker input are not driven to zero but

remain proportional to that weak input,

as observed experimentally in the inter-

mediate and deep layers of barn owl’s

optic tectum (superior colliculus in mam-

mals). This circuit behavior is in contrast

to properties of winner-take-all model

circuits where all information about the

strength of the weaker input is abolished.

The addition of reciprocal inhibition to

the lateral inhibition circuit is the simplest

modification that can yield adaptive

switch-like responses. More complex

schemes are certainly possible, but they

typically are less robust and require

longer times to reach the equilibrium, as
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Figure 2. A Circuit with Reciprocal Inhibition of Feedforward Lateral Inhibition Can Produce
Adaptive Switch-like Responses
Notations are as in Figure 1. The main difference is the switch from low to high level in output 1 occurs
when ‘‘competitor’’ input 2 exceeds the ‘‘main’’ input 1.
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Mysore and Knudsen (2012) demon-

strate. They also show that their circuit

model reproduces a range of other more

subtle features in the experimental data.

For example, the reciprocal inhibition

circuit can, for some values of parame-

ters, produce the sharpening of the transi-

tion between the two output states when

input strength is increased (such sharp-

ening is illustrated in Figure 2, cf. lower

curves for input strength equal to 1 and

upper curves for input strength equal to

6). Such sharpening was indeed observed

experimentally by Mysore and Knudsen

(2012) in some neurons. Another feature

of the data is the presence of stronger

suppression of responses to the weakest

than to the strongest input. This feature

was also accounted for by the reciprocal

inhibition circuit. Finally, this circuit is sup-

ported by anatomical studies. Neurons

in a midbrain GABAergic nucleus, the

nucleus isthmi pars magnocellularis, re-

ceive input from retinorecipient layers of

the optic tectum and send broad projec-

tions to the intermediate and deep layers

(which would provide support for lateral

inhibition) as well as within the nucleus

itself (Wang et al., 2004). The latter set of
connections would provide a way to

implement reciprocal inhibition.

The importance of the lateral inhibition

circuit motif has been appreciated in a

variety of sensory systems (Carandini

et al., 1997; Olsen et al., 2010). The func-

tional implications of reciprocal inhibition

between inhibitory neurons have been

studied primarily with respect to decision

making (Miller and Wang, 2006; Machens

et al., 2005). Functional implications of

reciprocal inhibition in sensory coding

have been less explored, but see the

recent report on the role of the ‘‘giant’’

GABAergic interneuron for generating

sparse coding in olfaction (Papadopoulou

et al., 2011). The findings of Mysore and

Knudsen (2012) raise the possibility that

reciprocal inhibition of feedforward lateral

inhibition might also play an important

role in sensory systems. First, anatomical

support for reciprocal inhibition is found

in other brain areas, such as the thalamic

reticular nucleus. Second, while switch-

like neural responses are crucial for

categorization, they are observed only

in a minority of neurons in optic tectum,

with most neurons exhibiting much more

gradual normalization of responses. So
Neuron
far, the more gradual neural responses

have been the focus of normalization

models in sensory coding. Perhaps, a

closer look at sensory coding will also

reveal the presence and functional signif-

icance of such switch-like responses

here.
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